
On the Energy Consumption and Performance
of Systems Software

Appears in the proceedings of the 4th Israeli Experimental Systems Conference (ACM SYSTOR 2011)

Zhichao Li, Radu Grosu, Priya Sehgal, Scott A. Smolka, Scott D. Stoller, and Erez Zadok
Department of Computer Science, Stony Brook University

{zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu

ABSTRACT
Models of energy consumption and performance are necessaryto
understand and identify system behavior, prior to designing ad-
vanced controls that can balance out performance and energyuse.
This paper considers the energy consumption and performance of
servers running a relatively simple file-compression workload. We
found that standard techniques for system identification donot pro-
duce acceptable models of energy consumption and performance,
due to the intricate interplay between the discrete nature of soft-
ware and the continuous nature of energy and performance. This
motivated us to perform a detailed empirical study of the energy
consumption and performance of this system with varying com-
pression algorithms and compression levels, file types, persistent
storage media, CPU DVFS levels, and disk I/O schedulers. Our
results identify and illustrate factors that complicate the system’s
energy consumption and performance, including nonlinearity, in-
stability, and multi-dimensionality. Our results providea basis for
future work on modeling energy consumption and performanceto
support principled design of controllable energy-aware systems.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation (efficiency and effectiveness); C.4
[Performance of Systems]: Modeling techniques; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Control theory

General Terms
Measurement, Performance

Keywords
Energy efficiency, System identification, Data compression

1. INTRODUCTION
The carbon footprint of the IT industry, though only 2% of the

world economy, is estimated to be equal to that of the entire avi-
ation industry [7]. Energy consumption is emerging as a critical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SYSTOR’11,May 30–June 1, 2011, Haifa, Israel.
Copyright 2011 ACM 978-1-4503-0773-4/11/05 ...$10.00.

issue in the design of computing systems [5, 14, 20, 22, 29, 33, 43].
The goals of energy-aware system design include saving energy
without sacrificing performance, and supporting flexible, dynamic
trade-offs between energy consumption and performance. Accurate
models of energy consumption and performance provide a founda-
tion for the design of energy-aware systems.

A large portion of the energy consumed by IT infrastructure is
due to desktop machines and commercial servers [8]. Moreover,
the total amount of electronic data stored world-wide is rising ex-
ponentially. By 2020, that figure is expected to reach 35 Zetta
Bytes [16]; energy consumption is expected to grow just as rapidly.
Thus, it is desirable to develop highly scalable solutions that are
significantly better than today’s solutions.

In prior work, we analyzed the energy and performance profiles
of server workloads, such as Web servers, email servers, database
servers, and file compression [24, 35]. We discovered large devia-
tions for both performance and energy consumption—as much as
10 times—suggesting that there are significant opportunities to save
energy and improve performance. Our past work considered those
systems only as black-boxes and reported their performanceand
energy consumption without a deeper understanding of the exact
reasons for those deviations.

Seeking a better understanding of the system internals of these
workloads, we tried to identify their internal behavior, sowe could
build advanced controllers to better manage both energy andperfor-
mance. Unfortunately, our initial attempts to identify these systems
using traditional linear-systems identification techniques resulted
in poor models with low prediction accuracy (under 50%).

In this paper, we shed considerable light on the complexities un-
derlying systems-software energy consumption and performance.
In particular, we present an in-depth experimental evaluation of the
energy consumption and performance of a relatively simple yet fa-
miliar file-compression workload as a representative workload in-
volving both substantial CPU usage and disk I/O. We also analyze
the effects of several input parameters, including choice of com-
pression algorithm, compression level, file type, persistent storage
media (e.g., SATA, SAS, and SSD), CPU Dynamic Voltage and
Frequency Scaling (DVFS) level, and disk I/O scheduler—allun-
der the Linux operating system.

Our experimental results show that energy consumption and per-
formance are unexpectedly complex and cannot be easily modeled
using standard system-identification techniques. We identify sev-
eral factors that contribute to this complexity, in terms ofnonlin-
earity, instability, and multi-dimensionality. Our results suggest
that hybrid discrete-continuous models [1, 18] may providea suit-
able foundation for modeling and control of energy consumption
and performance in energy-aware systems software.

The rest of the paper is organized as follows. Section 2 con-

1



siders related work. Section 3 provides the requisite background.
Section 4 provides the motivation for this work. Section 5 presents
our experimental setup and benchmarks. Section 6 contains our ex-
perimental results. We conclude in Section 7 and describe future
work in Section 8.

2. RELATED WORK
This section places our work in the context of past work.

2.1 Energy Efficiency
Many energy-saving techniques have been developed at both the

hardware and software levels. For example, virtualizationallows
multiple Operating Systems (OSs) to run on one server, sharing
most of the resources, thereby reducing energy consumption. More-
over, there are energy-aware cache replacement algorithms[41],
energy-aware task and interrupt management techniques [37], on-
line learning-based power management [10], predictive data group-
ing and replication [14], and energy-aware file systems configura-
tion pruning techniques [35]. Some modeling based approaches
have been proposed by Isci, Sarikaya, and others [21, 34]. Some
of our own past studies show significant energy savings possible
in commodity Linux servers running common workloads such as
Web, email, database, compression, etc. [24, 35]. Generally, op-
timal use of energy-saving techniques requires accurate models of
system energy consumption with respect to appropriate parameters;
the work described in this paper is a step towards the development
of such models.

2.2 Energy Consumption of Data Compression
Our prior work, conducted by Kothiyal et al., evaluated energy

consumption and performance of data compression on servers[24]
and demonstrated that compression reduces energy consumption in
some situations but not all. A careful application of compression
can save energy in some cases by a factor of 10×, but a careless ap-
plication of compression can easily waste energy and slow perfor-
mance by 200×. In contrast to the work described in this paper, our
past study did not focus on accurate modeling of energy consump-
tion and hence did not discuss system identification or analyze the
behavioral characteristics of energy consumption and performance
that make accurate modeling difficult.

3. BACKGROUND
In this section, we describe background work in terms of com-

pression algorithms (Section 3.1), I/O schedulers (Section 3.2), and
power and energy consumption (Section 3.3).

3.1 Compression Algorithms
In Linux, there are three main compression utilities:gzip,bzi-

p2, andlzop, each of which has compression levels ranging from
level 1 to level 9. A higher level tries to achieve a better compres-
sion ratio at the expense of additional CPU cycles.

Gzip [15] is based on theDEFLATE algorithm, which is a com-
bination of LZ77 and Huffman coding. Bzip2 uses the Burrows-
Wheeler transform to convert frequently recurring character se-
quences into strings of identical letters and then applies amove-to-
front transform and Huffman coding [6]. Lzop [30] uses the LZO
library and produces files a bit larger than Gzip’s but with a lower
CPU use. Forlzop, compression levels 1 to 6 are identical.

3.2 I/O Schedulers
I/O scheduling has been studied aggressively [2, 4, 19, 23, 39] es-

pecially since the speed of disk lags far behind the speed of CPU
and RAM.

Normally, a disk scheduler tries to maintain a balance between
fairness, performance, and latency (or real time guarantees). Fair-
ness guarantees that every process has fair share of the access to
disk on a multi-user system. Performance requires the scheduler
to serve requests predictably to save both time and energy. La-
tency means that any request must be served within a given time
limit. There are four main I/O schedulers in Linux systems: (1)
CFQ (the default), which emphasizes fairness; (2)ANTICIPATORY,
which emphasizes performance; (3)DEADLINE, which is designed
for low latency and real time access; and (4)NOOP, which is a sim-
ple first-come-first-served scheduler.

3.3 Power and Energy Consumption
In this subsection, we introduce the power and energy consump-

tion patterns for both CPU and disk, since our workload is both
CPU-intensive and disk-intensive.

The power consumed in a processor consists of three portions:
dynamic powerPdynamic, static powerPstatic, and short-circuit
power [26]. For Complementary Metal Oxide Semiconductor (CM-
OS) chips, dynamic power refers to the energy consumption in
switching transistors, while static power refers to the flowing leak-
age current when a transistor is off. Short-circuit power iscon-
sumed only during signal transitions and is insignificant. The dy-
namic power is calculated as follows:

Pdynamic = C × V
2
× f (1)

whereC is the capacitance per cycle,V is the supply voltage and
f is the processor clock frequency.

Although dynamic power is the primary source of power dissipa-
tion in CMOS chips, static power is becoming an important issue.
Static power is computed as follows:

Pstatic = V × Ith + Vbs × (Ijn + Ibn) (2)

whereIth is the sub-threshold leakage current,Vbs is the body bias
voltage, andIjn andIbs are the drain and source to body junction
leakage current, respectively.

Processors with Dynamic Voltage and Frequency Scaling (DVFS)
are capable of operating at multiple frequency and voltage levels.
Dynamic power is considered to be the dominant portion of thepro-
cessor’s energy consumption. As seen from Equation 1,Pdynamic

depends linearly on frequency and quadratically on voltage. How-
ever, operating at a lower voltage and frequency does not necessar-
ily result in overall energy savings, as we see later in Section 6.3.
The main reason is that when running at a lower frequency, it usu-
ally takes longer to accomplish the same work, which can increase
the total energy consumption.

The energy consumed by a Hard Disk Drive (HDD) follows the
following equation:

Edisk = Espin + Ehead (3)

whereEspin refers to the energy consumed by the spinning plat-
ter, andEhead refers to the energy consumption incurred by the
movement of the disk head.

2



4. MOTIVATION
Section 4.1 gives some background on system identification.Sec-

tion 4.2 describes the problems we encountered when we triedto
apply system identification techniques to model the energy con-
sumption of our workload.

4.1 System Identification

File Type

Compression Algorithm

CPU Frequency

Performance

Energy

(Compressor)

Plant
Compression Level

Figure 1: Plant: Compressor

System identification is the first step of control engineering that
uses statistical methods to build models from observed behavior.

As shown in Figure 1, our system has four inputs: compression
algorithm, compression level, file type, and CPU frequency.Our
system has two outputs: energy and performance. Applying off-
the-shelf technology for system identification, such as MATLAB’s
system identification tool-box [25] has considerable appeal, since
one needs to know only the inputs and outputs. It does not require
a detailed understanding of the system’s behavior. By applying sta-
tistical techniques to data collected from the target system, system
identification attempts to construct a mathematical model of the re-
lationships between inputs and outputs.

A typical workflow for system identification follows these four
steps: (1) Specify the model in the form of inputs and outputs, and
design experiments to collect data; (2) Apply the system identifi-
cation algorithm to estimate the values of the coefficients of the
model; (3) Verify the accuracy of the resulting model by evaluating
it against additional measured data; (4) Decide whether themodel
is acceptable. If the prediction accuracy is unacceptably low, one
or more steps in the workflow need to be revisited.

In our experiments, we used a traditional linear state-space model
of the following form:

x(n + 1) = Ax(n) + Bu(n) + Kw(n) (4a)

y(n) = Cx(n) + Du(n) + w(n) (4b)

whereu(n) are the inputs,y(n) are the outputs,x(n) the internal
states of the plant, andw(n) is a white Gaussian noise representing
uncontrollable inputs and output measurement errors (e.g., errors
introduced by the default system daemons) at timen. The parame-
ter x(n + 1) denotes the next internal states of the plant. Matrices
A, B, C, D, andK denote the significance or weight that each el-
ement in the input, output, and Gaussian noise have in determining
the next state and output of the system.

4.2 Problems Encountered
Our system is a simple file compressor. System inputsx can be

file type (ZERO, TEXT, BINARY , or RANDOM), compression level
(1 to 9), compression algorithm (GZIP, BZIP2, LZOP, or NONE

for no compression), and CPU frequency/voltage (eight available
choices). We considered energy consumption and performance as
the outputsy.

The system inputs and outputs must be quantified in order to ap-
ply system identification. Energy is measured in Watt-hours. Per-
formance is measured as the number of files compressed per sec-

3500 4000 4500 5000 5500 6000
−10

0

10

Energy. (sim)

Time (s)

En
erg

y (
0.1

 W
att

−H
ou

rs)

 

 

3500 4000 4500 5000 5500 6000
−1

−0.5

0

0.5

Perf. (sim)

Time (s)

Pe
rf (

Fil
es

/Se
c)

 

 

measured

predicted; fit: 17.39%

measured

predicted; fit: 24.01%

Figure 2: A typical example for poor accuracy. The two inputs
are File Type and CPU Frequency. Compression algorithm is
fixed to be gzip along with its default compression level. The
two outputs are energy and performance which are normalized
to be zero-mean.

ond. The CPU frequency is measured in Hertz. However, it is diffi-
cult to choose appropriate numerical values to represent file types,
compression levels, and compression algorithms.

The compression level is numerical, but the level number is ac-
tually just a label (in other words, a name); the numerical value has
no direct significance other than ordering. Similarly, file types and
compression algorithms are naturally identified by discrete, non-
numerical labels but must be represented numerically to apply the
system identification algorithm. The numbers chosen are signifi-
cant, because they must be related to the next states and outputs
by Equation 4 for system identification to succeed and shouldnot
impose arbitrary quantitative relationships. However, wehave no
a-priori way of deciding what values to use.

We tried a simple linear approach using consecutive integers
(e.g., 0 forNONE, 1 for GZIP, 2 for BZIP2 and 3 forLZOP), as
well as other numbers and ordering. We also tried a non-linear
approach, assigning each compression algorithm a number corre-
sponding to its compression ratio; but the compression ratio varies
with file type and hence is not a fixed value associated solely with
the compression algorithm.

In conclusion, labels are similar to the discrete states of afinite
automaton. In our case, they represent different modes of system
behavior; that is, they represent the modes of a hybrid automaton.
Any attempt to give them a numerical meaning is doomed to fail.

We prepared two data sets of the same size to identify the system.
One data set is used to estimate the parameters of the model using
least-squares techniques; the other is used to evaluate thequality
of the model fit. Accuracy is the percentage of model fit. We ap-
plied the MATLAB’s system identification tool-box to learn Single-
Input-Single-Output (SISO) and other system models. However,
we achieved only limited accuracy, less than 50% in overall.A
typical error graph appears in Figure 2.

This was clearly insufficient as a basis to design a controller. In
order to better understand the causes of the problem, and to find
ways of splitting the nonlinear behavior into segments thatcan be
more accurately modeled as linear systems, we decided to study the
system’s energy consumption and performance in more detail.

5. METHODOLOGY
This section details our experimental setup and benchmarks.

5.1 Experimental Setup
We conducted our experiments on a Dell PowerEdge R710 server

consisting of one quad-core IntelR© XeonTM Nehalem CPU with
a maximum frequency of 2.395GHz with dynamic frequency and

3



voltage scaling (DVFS) support: 7 different frequencies ata dif-
ference of 133MHz each without the Turbo Mode, and 8 differ-
ent frequencies at a difference of 1MHZ for the top 2 frequencies
and a difference of 133MHZ for the remaining 7 frequencies with
the Turbo Mode on. The machine has 24GB RAM, out of which
we used only 2GB to force I/O to take place. The server has two
146GB Seagate SAS disks with 15,000RPM rotation speed and a
16MB cache, two 250GB internal Fujitsu SATA disks with 7,200
RPM rotation speed and 16MB cache, and one 80GB Intel SSD
disk model SSDSA2MH080G1C5. We ran all of our benchmarks
on all of these three different kinds of disk drives. The server was
running the Linux 2.6.18 kernel with theacpi_cpufreqmodule
installed to enable software control of the CPU frequency.

We connected the server to a WattsUP Pro ES in-line power me-
ter [12], which measures the energy drawn by a device plugged
into the meter’s receptacle. The power meter uses non-volatile
memory to store measurements every second. Its resolution is 0.1
Watt-hours (1 Watt-hour = 3,600 Joules). The accuracy is±1.5%
of the measured value plus a constant error of±0.3 Watt-hours.
Its resolution for power measurements is 0.1 Watts. We used the
wattsup Linux utility to download the recorded data from the
meter over a USB interface to the test machine.

We conducted 216 combinations of experiments (repeated five
times each), and collected a large data set: 4,810,320 data points in
total for a single run. Running one complete set of benchmarks took
about 15 calendar days to complete. We ran and reran experiments
many times over a period of more than a year, as we kept refining
our experimentation methodology and developed automationtools.
Retrieving information from this large data set and drawingfigures
were made simpler thanks to the automation tools we built.

To automate the measurements, we developed a tool called auto-
ebench, written in Perl and Bash, that helped us benchmark the en-
ergy and power consumption under different scenarios whilelaunch-
ing vmstat to record the number of block reads and block writes.
We measured the total number of block reads and writes at the
whole-system level; this saved us significant time and effort.

5.2 Benchmarks
The workload for each test is to compress 20 identical files with

20 threads concurrently, and write the compressed files to disk.
Each file is 65MB. Several factors influence energy consumption
for data compression, as we will discuss in Section 6.3. In order to
fully explore these factors and their interactions, we conducted ex-
periments for each combination. Specifically, we consider the fol-
lowing factors: persistent storage media (SAS disk, SATA disk, and
SSD disk), I/O scheduler (anticipatory, CFQ, deadline and NOOP),
compression algorithm (gzip, bzip2, and lzop) and compression
level (1–9), and file type (text, binary, and random). We ran the
above workload for each combination of these factors. Between
each compression level, we inserted some sleeping intervals, so that
each experiment for each compression level started at the same ex-
act time. The elapsed time for compression plus the sleepinginter-
val was the same and fixed during each compression level, in order
to align the graphs for each compression level. Auto-ebenchis re-
sponsible for repeatedly launching the experiments and recording
the results multiple times and under multiple scenarios. Our exper-
iments follow this pattern unless otherwise noted.

We ran all the tests five times and computed the 95% confidence
intervals using the Student-t distribution. The error barsshown in
our graphs are the half widths of the 95% confidence intervals. We
used version 1.3.5 ofgzip, version 1.0.3 ofbzip2, and version
v1.02rc1 oflzop.

The I/O scheduler can be set per device and is easy to configure.

In order to set the I/O scheduler, we write the desired scheduler
name to/sys/block/$dev/queue/schedulerand launch
the experiments after that.

We ran the tests on the specified disk drive, formatted with Ext3
file system and mounted using the default options. To avoid caching
effects, we unmounted the file system after each test iteration to
flush the data in memory to disk. Our measurements include this
flushing time.

6. EVALUATION
In this section, we provide evaluation and deep analysis forthe

energy consumption pattern of our file-compression workload. Sec-
tions 6.1, 6.2, and 6.3 focus on non-linearity, instability, and multi-
dimensionality, respectively.

6.1 Nonlinearity
For compression algorithms, a higher compression level usually

means a better compression ratio (CR). Table 1 shows the CR for
all algorithms and levels.

Tool
File Type

Text Binary Rand
gz-1 3.61 2.14 1.00
gz-2 3.77 2.18 1.00
gz-3 3.90 2.21 1.00
gz-4 4.18 2.26 1.00
gz-5 4.35 2.30 1.00
gz-6 4.43 2.32 1.00
gz-7 4.45 2.33 1.00
gz-8 4.46 2.33 1.00
gz-9 4.46 2.33 1.00
bz-1 4.72 2.38 0.99
bz-2 5.02 2.45 0.99
bz-3 5.18 2.53 0.99
bz-4 5.28 2.57 0.99
bz-5 5.36 2.60 0.99
bz-6 5.40 2.64 0.99
bz-7 5.44 2.65 1.00
bz-8 5.49 2.67 1.00
bz-9 5.50 2.69 1.00

lzo-(1∼6) 2.82 1.77 1.00
lzo-7 3.80 2.15 1.00
lzo-8 3.84 2.16 1.00
lzo-9 3.84 2.17 1.00

Table 1: Compression ratios achieved by various compression
utilities and levels

Although it is true that a higher compression level generally
commits fewer blocks to disk for the same workload and hence
might save energy due to reduced I/O activity, the overall energy
consumption might not follow the same pattern. One possiblerea-
son is that the CPU may have to perform a lot more work in order
to achieve a better CR, which takes longer time and consumes more
energy. The actual energy consumed under certain workloadsis in
fact a trade-off between these factors. Therefore, as we cansee
from Figure 3, which presents measurements forgzip, bzip2,
andlzop, the energy consumption is not a linear function of the
compression level. Moreover, it is also not monotonically increas-
ing with the compression level. For example, in Figure 3(b),energy
consumption peaks at level 7, then unexpectedly drops at levels 8
and 9.

4



 0

 1

 2

 3

 4

 5

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, H-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, H-Freq, SAS, CFQ

0.9 0.98 1.1 1.2
1.44

1.8 1.96
1.74 1.82

(a) Energy consumption in each compression level of gzip

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

E
la

ps
ed

 T
im

e 
(s

ec
)

Compression Level

Gzip, Text, H-Freq, SAS, CFQ

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

E
la

ps
ed

 T
im

e 
(s

ec
)

Compression Level

Gzip, Text, H-Freq, SAS, CFQ

26 27 30 32.2
38.8

48.2
53.4

44 44.8

(b) Time taken in each compression level of gzip

 0

 1

 2

 3

 4

 5

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, H-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, H-Freq, SAS, CFQ

1.9 1.96 2 2 2.12 2.14 2.16 2.24 2.24

(c) Energy consumption in each compression level of bzip2

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

E
la

ps
ed

 T
im

e 
(s

ec
)

Compression Level

Bzip2, Text, H-Freq, SAS, CFQ

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

E
la

ps
ed

 T
im

e 
(s

ec
)

Compression Level

Bzip2, Text, H-Freq, SAS, CFQ

43 43.2 44 44.8 46.2 47.4 47.2 49.2 48.8

(d) Time taken in each compression level of bzip2

 0

 1

 2

 3

 4

 5

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Text, H-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Text, H-Freq, SAS, CFQ

0.5 0.52 0.52 0.58 0.56 0.56

1.26

2.08
2.28

(e) Energy consumption in each compression level of lzop

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

E
la

ps
ed

 T
im

e 
(s

ec
)

Compression Level

Lzop, Text, H-Freq, SAS, CFQ

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

E
la

ps
ed

 T
im

e 
(s

ec
)

Compression Level

Lzop, Text, H-Freq, SAS, CFQ

16 16 16.2 16.2 16 16

29.4

46.4
51.4

(f) Time taken in each compression level of lzop

Figure 3: An example combined graph for illustrating nonlinearity. Experiments compressing text files using the highest CPU
frequency, SAS disks, and the CFQ I/O scheduler. In 3(a), thex axis denotes the compression level and the y axis denotes Watt-hours
(equals to 3,600 Joules). In 3(b), the unit for Elapsed Time is seconds. This representation is kept the same for 3(c), 3(d), 3(e), and
3(f).

Comparing the graphs in the left and right columns of Figure 3,
we also observe that the energy consumption for the whole system
depends heavily on the total elapsed time during the compression
period [9, 32].

As we can see from Figure 3(a), in the case ofgzip, the energy
consumption goes up non-linearly and then goes down slightly as
the compression level increases. Figure 3(b) shows that theelapsed
time follows the same trend. In the case ofbzip2 as shown in
Figure 3(c), the energy consumption is relatively stable, increas-
ing only slightly across all 9 compression levels, which suggests
that a balance between the CPU energy consumption and disk en-
ergy consumption has been achieved. The elapsed time, shownin
Figure 3(d), follows the same pattern. Withlzop, as shown in
Figure 3(e), the energy consumption is the same for the first six
identical compression levels and then increases monotonically but
non-linearly. This reflects that for the last three compression lev-
els, due to the longer elapsed time, the entire system (including the
disk drive, even when it is just spinning, not reading or writing) is
consuming more power at higher compression levels even though

slightly fewer blocks are written to disk. Figure 3(f) show that the
elapsed time strictly follows the same pattern.

In summary, it is clear that the energy consumption and elapsed
time relate non-linearly and in some cases non-monotonically with
the compression level. Consequently, controlling the system’s en-
ergy usage by adjusting the compression level is complex.

6.2 Instability
This section examines how the power consumption varies during

each run. We found that in some cases, the power consumption
response is unstable and fluctuates significantly, as we can see from
Figures 4, 6, and 7. This should be taken into consideration when
designing power-aware systems.

Our experiments revealed that the cause of those fluctuations lies
in the interleavings between disk reads and writes when the CPU
frequency is maintained at the same level. We discuss this inmore
detail below.

Forgzip (Figure 4(a)), the power consumption response is rel-
atively stable from level 1 to level 7. However, it becomes unstable

5



 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

P
ow

er
 (

W
at

ts
)

Time (s)

Gzip, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

level 1 to 9

(a) Power consumption response for each level of compression of gzip

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  200  400  600  800  1000  1200

N
um

be
rs

 o
f b

lo
ck

s 
pe

r 
se

c 
(1

00
0x

)

Time (s)

Gzip, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

Block in
Block out

(b) Rate of block reads and writes for each level of compression of gzip

Figure 4: Relationship between the rates of block reads/writes and power consumption of gzip. The y axis is in units of thousands of
reads/writes. The CPU frequency is set to the highest frequency in the above experiments. One can see that there are fluctuations in
levels 8 and 9.

 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

P
ow

er
 (

W
at

ts
)

Time (s)

Bzip2, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

level 1 to 9

(a) Power consumption response for each level of compression of bzip2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  200  400  600  800  1000  1200

N
um

be
rs

 o
f b

lo
ck

s 
pe

r 
se

c 
(1

00
0x

)

Time (s)

Bzip2, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

Block in
Block out

(b) Rate of block reads and writes for each level of compression of bzip2

Figure 5: Relationship between the rates of block reads/writes and power consumption of bzip2. The CPU frequency is set to the
highest frequency in the above experiments. One can see thatthe power response is stable for each compression level.

6



 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

P
ow

er
 (

W
at

ts
)

Time (s)

Lzop, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

level 1 to 9

(a) Power consumption response for each level of compression of lzop

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  200  400  600  800  1000  1200

N
um

be
r 

of
 b

lo
ck

s 
pe

r 
se

c 
(1

00
0x

)

Time (s)

Lzop, Text, H-Freq, SAS, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

Block in
Block out

(b) Rate of block reads and writes for each level of compression of lzop

Figure 6: Relationship between the rates of block reads/writes and power consumption of lzop. The CPU frequency is set tothe
highest frequency in the above experiments. One can see fluctuations from levels 1 to 7.

 0

 50

 100

 150

 200

 0  200  400  600  800  1000  1200

P
ow

er
 (

W
at

ts
)

Time (s)

Bzip2, Random, H-Freq, SATA, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

level 1 to 9

(a) Power consumption response for each level of compression of bzip2 with SATA and random files

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  200  400  600  800  1000  1200

N
um

be
r 

of
 b

lo
ck

s 
pe

r 
se

c 
(1

00
0x

)

Time (s)

Bzip2, Random, H-Freq, SATA, CFQ

level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9

Block in
Block out

(b) Rate of block reads and writes for each level of compression of bzip2 with SATA and random files

Figure 7: An even more complex example. The CPU frequency is set to the highest frequency in the above experiments. One cansee
large fluctuations during every compression level.

7



in levels 8 and 9. Furthermore, Figure 4(b) reveals that the rate at
which blocks are read exhibits the same pattern of stabilityin lev-
els 1 to 7 and fluctuation at levels 8 and 9. Looking at Figure 4(b)
in detail, especially in levels 8 and level 9, it also revealsmore
frequent interleavings between block reads and writes. Forlevels
1 through 4, there are just small fluctuations in power consump-
tion towards the end of the compression job. A similar pattern ap-
pears in the interleavings between block reads and writes for levels
1 to 4. Moreover, the stable response in levels 5, 6, and 7 sug-
gests equally distributed interleavings between the ratesof block
reads and writes. We believe that when block reads and writesare
interleaved beyond a certain level, I/O scheduler algorithms (and
possibly algorithms inside the disk) begin to break down andtheir
efficiency goes down considerably as a result.

For bzip2 (Figure 5(a)), the power consumption response is
relatively stable. In Figure 5(b), we can see clearly that the rate
of disk block reads is maintained at a stable level, and the rate at
which disk blocks are written is equally distributed throughout the
compression period. This leads the power consumption response to
be stable.

For lzop (Figure 6(a)), the power consumption response fol-
lows a different pattern compared with the previous two scenarios.
We can see from Figure 6(b) that for the first six levels, the I/O rate
is much higher than in the remaining levels. However, the runis
shorter in terms of elapsed time, as we can see from the width of
the active intervals, and the interleavings between the rates of block
reads and writes are in some degree not equally distributed across
the compression level, resulting in a few fluctuations towards the
end of each compression level. For levels 8 and 9, since the in-
terleavings are equally distributed, the power response isrelatively
stable. The fluctuations in level 7 suggest there exists unequally
distributed interleavings between the rates of disk reads and writes.

An even more complicated example appears in Figure 7(a). In
this scenario, random files are being compressed and SATA is the
persistent storage media. The power response is extremely unsta-
ble in each compression level. The interleavings between the rates
of block reads and writes are ill regulated, as we can see fromFig-
ure 7(b). This suggests that the harder the file is to compress(e.g.,
high entropy), the less predictable the performance and energy con-
sumption are. There is no simple way to model systems exhibiting
such complex and diverse behavior.

We conclude that the power response exhibits instability inmany
cases. This contributes to the complexity of the energy usage of the
system and makes controlling a serious challenge.

6.3 Multi-Dimensionality
In this section, we illustrate the dependence of the energy con-

sumption for our system on several factors, such as CPU frequency,
compression algorithm and level, file type, persistent storage me-
dia, and disk I/O scheduler.

The compression algorithm is clearly an important factor ofen-
ergy consumption here, as we have already seen in Figure 3. For
example,bzip2 takes much longer time to compress thanlzop
does. Thus,bzip2 usually takes more energy to compress than
lzop does.

One might expect that a lower CPU frequency will result in lower
energy consumption. However, as we can see from Figures 8(a)and
8(b), that is not necessarily true. With lower CPU frequency, the
energy consumption is actually increased for all the compression
levels. The reason is that when the CPU frequency is lower, ittakes
longer to finish the compression, which generally results ina higher
total energy consumption. We can also see from Figure 8 that for
both the highest frequency and the lowest frequency, the consumed

energy increases as a function of compression level. However, there
is also a possibility that when the CPU frequency is lower, the rate
at which the CPU compresses data in the blocks will be closer to
the rate at which the disk drive produces blocks. If this happens, it
can save energy at the end, since there is no wasted energy.

The disk I/O scheduler influences the order of disk writes and
hence may affect the energy consumption. Figure 9 shows the en-
ergy consumption with 4 different I/O schedulers. We can seethat
anticipatory and CFQ have largely the same effect, while deadline
and NOOP also have similar effect to each other but differentfrom
anticipatory or CFQ. As the unit for the y axis is Watt-hours,the
difference in energy consumption between anticipatory andCFQ is
actually significant, especially for larger workloads.

The file type affects different compression strategies for each
compression algorithm and hence plays a role in energy consump-
tion. The left column of Figure 10 shows the energy consumption
of the compression workload for different file types. We see that the
workload with binary files consumes more energy than the work-
load with text files when other parameters are the same; this makes
sense because text files have more common patterns that can be
compressed (e.g., lower entropy). Also for text and binary files,
more energy is consumed with compression level 9 than with other
compression levels. Surprisingly, for random files, level 8turns
out to be the most energy-consuming one, instead of level 9. We
conclude that the file type affects the energy consumption response
in a manner that is not easy to predict, and an approach involving
adaptive feedback control may thus be required.

Different disk types usually have different electronics and firmw-
are, different physical features, and different storage strategies. This
should affect energy consumption. The right column of Figure 10
shows the energy consumption of the compression workload for
different persistent storage media. As expected, SAS is generally
faster than SATA, so the workload runs faster and consumes less en-
ergy, 2–12% less. SSD is the fastest storage media among the three,
consuming the least energy, 3–5% less than SAS and 6–16% less
than SATA. This is because an SSD contains no energy-consuming
moving parts (cf. Equation 3) and stores data on non-volatile flash
memory chips using a Flash Translation Layer (FTL) that allows
the linear device to look like a traditional disk. These results also
show that the workload is not completely CPU bound, even though
it is CPU intensive.

In summary, we observe that the total energy consumption of
computer systems follows a complicated pattern, because the en-
ergy consumption for each subsystem contributes to it. Thissug-
gests that instead of trying to develop system-level energymodels
purely in a bottom-up fashion, a more practical approach maybe to
use machine learning methods in the development of such models
to guide the design of energy-aware systems.

7. CONCLUSIONS
Accurate models of energy consumption and performance are

vital for the design and implementation of energy-efficientsys-
tems. Our detailed experimental results show that the behavior
of these quantities is far more complicated than one might expect,
even for a relatively simple workload such as data compression.
The complexity is reflected in nonlinearity, instability, and multi-
dimensionality. These factors must be considered in the design of
energy-efficient systems.

Although we have measured and analyzed the effects of several
factors, there may be other important factors to consider, depending
on the system, such as the workload itself, and even the server and
machine-room temperatures.

8



 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Binary, H-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Binary, H-Freq, SAS, CFQ

1.92 1.96 2 2.1 2.18 2.2 2.18 2.2 2.42

(a) Energy consumption in highest frequency with each compres-
sion level

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Binary, L-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Binary, L-Freq, SAS, CFQ

2.4 2.44 2.5 2.62 2.72 2.78 2.78 2.86 3.04

(b) Energy consumption in lowest frequency with each compression
level

Figure 8: Energy consumption at the highest and lowest CPU frequencies

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, L-Freq, SATA, Antic
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, L-Freq, SATA, Antic

1.54 1.66 1.86 2.02
2.36 2.34 2.22 2.04 2.18

(a) Energy consumption with anticipatory for each compression
level

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9
E

ne
rg

y 
(W

at
t-

H
ou

rs
)

Compression Level

Gzip, Text, L-Freq, SATA, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9
E

ne
rg

y 
(W

at
t-

H
ou

rs
)

Compression Level

Gzip, Text, L-Freq, SATA, CFQ

1.58 1.6 1.78 1.84
2.36

2.8 2.78
2.38 2.5

(b) Energy consumption with CFQ for each compression level

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, L-Freq, SATA, Deadline
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, L-Freq, SATA, Deadline

1.84 1.86 1.9 1.86 1.84 1.94 1.94 2.2 2.34

(c) Energy consumption with deadline for each compression level

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, L-Freq, SATA, Noop
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Gzip, Text, L-Freq, SATA, Noop

1.92 1.88 1.82 1.82 1.78 1.92 2.02 2.14 2.32

(d) Energy consumption with NOOP for each compression level

Figure 9: Energy consumption under 4 different I/O schedulers

8. FUTURE WORK
Software systems often perform poorly because of poor handling

of dynamic changes in workloads and resources (e.g., due to fail-
ures). The problem of dynamic changes exists in many engineering
disciplines, such as aeronautic, electrical and mechanical engineer-
ing [17]. Feedback control theory [10, 27, 31, 36, 44, 45] hasbeen
proven effective in the design of some energy-efficient computer
systems. We plan to apply control theory to complex softwaresys-
tems that can balance performance and energy consumption given
user preferences.

To achieve this goal, we first need to build our knowledge of the
energy and performance of the complex systems. Our criticalmea-
surements and analysis of energy and performance patterns will in
the end help building better energy-aware software systems, bet-
ter schedulers [3, 28, 40], better operating systems and even better
controllers [11]. We plan to investigate techniques to overcome
the non-linearity of systems, by exploring linearization techniques

such as segmenting a behavior into groups where each group can
be modeled linearly, and combining the groups using a state ma-
chine. We have already begun to explore the design of controllers
that can handle multiple inputs, multiple outputs, and multiple in-
ternal states (e.g., MIMO).

There are several directions for future work on measurementand
modeling of energy consumption. Currently, we can only measure
the energy consumption of the entire system. However, in some
situations, it may be desirable to measure, model, and control en-
ergy consumption of individual components, such as the CPU,the
disk drive [42], and so on. In addition, to better understandthe
dependence of the energy consumption of file compression on the
file contents, we plan to generate and use files of the same typebut
with different entropy levels [13].

Moreover, because it is so tedious to measure the energy con-
sumption under so many different scenarios, we plan to continue
developing the auto-ebench tool-set mentioned in Section 5to au-

9



 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Text, L-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Text, L-Freq, SAS, CFQ

0.68 0.7 0.7 0.7 0.7 0.68
1.38

2.6 2.88

(a) Energy consumption of text files with each compression level

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, L-Freq, SATA, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, L-Freq, SATA, CFQ

2.74 2.66 2.74 2.76 2.78 2.8 2.8 2.84 2.88

(b) Energy consumption of SATA

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Binary, L-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Binary, L-Freq, SAS, CFQ

1 1 1.04 1.02 1.08 1.06

1.98

4.62

6.22

(c) Energy consumption of binary files with each compression level

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, L-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, L-Freq, SAS, CFQ

2.4 2.44 2.52 2.58 2.6 2.7 2.72 2.78 2.8

(d) Energy consumption of SAS

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Random, L-Freq, SAS, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Lzop, Random, L-Freq, SAS, CFQ

1.3 1.52 1.52 1.48 1.52 1.46 1.4

2.22 2.26

(e) Energy consumption of random files with each compression
level

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, L-Freq, SSD, CFQ
energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9

E
ne

rg
y 

(W
at

t-
H

ou
rs

)

Compression Level

Bzip2, Text, L-Freq, SSD, CFQ

2.3 2.32 2.42 2.5 2.52 2.58 2.6 2.68 2.72

(f) Energy consumption of SSD

Figure 10: Energy consumption for different File types and disk types

tomate energy benchmarking, similar to what auto-pilot [38] does
to automate file system benchmarking. We plan to enhance auto-
ebench to support additional features such as automatic calculation
of confidence intervals, automatic detection of memory leaks, and
intelligent analysis of results.

9. ACKNOWLEDGEMENTS
This work is sponsored in part by NSF awards CCF-0937854,

CCF-0926190, CCF-1018459, and CNS-0831298; AFOSR grant
number FA0550-09-1-0481; and an IBM Faculty Award. This work
performed in part under the Stony Brook Advanced Energy Re-
search and Technology Center (AERTC,www.aertc.org).

10. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183–235, 1994.
[2] J. Axboe. CFQ IO Scheduler, 2007.

http://mirror.linux.org.au/pub/linux.
conf.au/2007/video/talks/123.ogg.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez.
Power-Aware Scheduling for Periodic Real-Time Tasks.
IEEE Transactions on Computers, 53:584–600, 2004.

[4] N. Bansal, A. Blum, S. Chawla, and A. Meyerson.
Approximation algorithms for deadline-tsp and vehicle
routing with time-windows. InProceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages
166–174. ACM, 2004.

[5] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, and L. C.
Mcdowell. The case for Power Management in Web Servers,
2002.www.research.ibm.com/people/l/
lefurgy/Publications/pac2002.pdf.

[6] Bzip2 Wikipedia Documentation.
http://en.wikipedia.org/wiki/Bzip2.

[7] J. Chang, J. Meza, P. Ranganathan, C. Bash, and A. Shah.

10



Green server design: Beyond operational energy to
sustainability. InProceedings of the 2010 International
Conference on Power Aware Computing and Systems,
HotPower’10, 2010.

[8] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks
for Storage Archives. InProceedings of the 2002 ACM/IEEE
conference on Supercomputing, pages 1–11, 2002.

[9] D. C. Montgomery.Engineering Statistics. Wiley, 3 edition,
2004.

[10] G. Dhiman and T. Rosing. System-level Power Management
using Online Learning.IEEE Transaction on
Computer-Aided Design of Integrated Circuits Systems,
28(5):676–689, 2009.

[11] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M.
Tilbury. Using MIMO feedback control to enforce policies
for interrelated metrics with application to the apache web
server. InProceedings of the Network Operations and
Management Symposium, pages 219–234, 2002.

[12] Watts up? PRO ES Power Meter.www.wattsupmeters.
com/secure/products.php.

[13] Introduction to Entropy.http://en.wikipedia.org/
wiki/Introduction_to_entropy.

[14] D. Essary and A. Amer. Predictive Data Grouping: Defining
the Bounds of Energy and Latency Reduction through
Predictive Data Grouping and Replication.ACM
Transactions on Storage (TOS), 4(1):1–23, May 2008.

[15] J. L. Gailly. GNU Zip.
www.gnu.org/software/gzip/gzip.html, 2000.

[16] J. Gantz and D. Reinsel. The digital universe decade - are
you ready?www.emc.com/digital_universe, May
2010.

[17] J. L. Hellerstein, S. Singhal, and Q. Wang. Research
Challenges in Control Engineering of Computing Systems.
Transactions on Network and Service Management, 6(4),
2009.

[18] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: The
next generation. InIEEE Real-Time Systems Symposium,
pages 56–65, 1995.

[19] M. Hofri. Disk Scheduling: FCFS vs. SSTF revisited.
Communication of the ACM, 23(11), November 1980.

[20] H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk
Performance and Energy Consumption. InProceedings of
the 20th ACM Symposium on Operating Systems Principles
(SOSP ’05), pages 263–276, Brighton, UK, October 2005.
ACM Press.

[21] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application
to dynamic power management. InProceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2006.

[22] N. Joukov and J. Sipek. GreenFS: Making enterprise
computers greener by protecting them better. InProceedings
of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008 (EuroSys 2008), Glasgow, Scotland,
April 2008. ACM.

[23] R. King. Disk Arm Movement Anticipation of Future
Requests.ACM Transactions on Computer Systems,
8(3):214–229, 1990.

[24] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energyand
Performance Evaluation of Lossless File Data Compression

on Server Systems. InProceedings of the 2nd Israeli
Experimental Systems Conference (ACM SYSTOR ’09),
Haifa, Israel, May 2009. ACM.

[25] L. Ljung. System Identification (2nd ed.): Theory for the
User. Prentice Hall, 1999.

[26] S. M Martin, K. Flautner, T. N. Mudge, and D. Blaauw.
Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under dynamic
workloads. InProceedings of the 2002 IEEE/ACM
International Conference on Computer-Aided Design, pages
721–725, 2002.

[27] R. Minerick, V. W. Freeh, and P.M. Kogge. Dynamic Power
Management using Feedback , 2002.
www4.ncsu.edu/~vwfreeh/colp.pdf.

[28] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem.
Energy Aware Scheduling for Distributed Real-Time
Systems. InInternational Parallel and Distributed
Processing Symposium, 2003.

[29] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: practical power management for enterprise
storage. InProceedings of the 6th USENIX Conference on
File and Storage Technologies (FAST 2008), 2008.

[30] M.F.X.J. Oberhumer. lzop data compression utility.
www.lzop.org/.

[31] C. Pereira, V. Raghunathan, S. Gupta, R. Gupta, and
M. Srivastava. A Software Architecture for Building Power
Aware Real Time Operating Systems. InProceedings of the
IEEE CAS Workshop on Wireless Communication and
Networking, 2002.

[32] R. Jain.The Art of Computer System Performance Analysis.
Wiley, 1991.

[33] S. Gurumurthi and A. Sivasubramaniam and M. Kandemir
and H. Franke. DRPM: Dynamic Speed Control for Power
Management in Server Class Disks. InProceedings of the
30th Annual International Symposium on Computer
Architecture, pages 169–181, 2003.

[34] R. Sarikaya, C. Isci, and A. Buyuktosunoglu. Runtime
workload behavior prediction using statistical metric
modeling with application to dynamic power management.
In In IEEE International Symposium on Workload
Characterization, 2010.

[35] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating Performance
and Energy in File System Server Workloads extensions. In
Proceedings of the Eighth USENIX Conference on File and
Storage Technologies (FAST ’10), pages 253–266, San Jose,
CA, February 2010. USENIX Association.

[36] A. Soria-Lopez, P. Mejia-Alvarez, and J. Cornejo. Feedback
scheduling of power-aware soft real-time tasks. InENC ’05:
Proceedings of the Sixth Mexican International Conference
on Computer Science, pages 266–273, Washington, DC,
USA, 2005. IEEE Computer Society.

[37] V. Srinivasan, G. R. Shenoy, S. Vaddagiri, and D. Sarma.
Energy-aware task and interrupt management in linux. In
Ottawa Linux Symposium, July 2008.

[38] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and
E. Zadok. Auto-pilot: A Platform for System Software
Benchmarking. InProceedings of the Annual USENIX
Technical Conference, FREENIX Track, pages 175–187,
Anaheim, CA, April 2005. USENIX Association.

[39] Y. Yu, D. Shin, H. Eom, and H. Yeom. NCQ vs I/O
Scheduler: Preventing Unexpected Misbehaviors.ACM
Transaction on Storage, 6(1), March 2010.

11



[40] W. Yuan and K. Nahrstedt. Energy-efficient CPU Scheduling
for Multimedia Applications.ACM Transactions of
Computer System, 24(3):292–331, 2006.

[41] J. Yue, Y. Zhu, Z. Cai, and L. Lin. Energy and thermal aware
buffer cache replacement algorithm. InThe 26th IEEE
Symposium on Massive Storage Systems and Technologies,
2010.

[42] J. Zedlewaki, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy,
and R. Wang. Modeling hard-disk power consumption. In
Second Conference on File and Storage Technologies, 2003.

[43] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and
P. Cao. Reducing Energy Consumption of Disk Storage
Using Power-Aware Cache Management. InProceedings of
the 10th International Symposium on High-Performance
Computer Architecture, pages 118–129, 2004.

[44] Y. Zhu and F. Mueller. Feedback EDF Scheduling Exploiting
Dynamic Voltage Scaling. InRTAS ’04: Proceedings of the
10th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 33 – 63, Washington, DC,
USA, 2004. IEEE Computer Society.

[45] Y. Zhu and F. Mueller. DVSleak: Combining Leakage
Reduction and Voltage Scaling in Feedback EDF
Scheduling. InACM SIGPLAN Notices, Proc. of LCTES’07,
pages 31–40, 2007.

12


