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ABSTRACT

Models of energy consumption and performance are necessary
understand and identify system behavior, prior to desmmid-
vanced controls that can balance out performance and ensggy
This paper considers the energy consumption and perforenaic
servers running a relatively simple file-compression waeakl. We
found that standard techniques for system identificationatgro-
duce acceptable models of energy consumption and perfeaman
due to the intricate interplay between the discrete natéisoft-
ware and the continuous nature of energy and performancis. Th
motivated us to perform a detailed empirical study of thergyne
consumption and performance of this system with varying-com
pression algorithms and compression levels, file typesigient
storage media, CPU DVFS levels, and disk 1/0O schedulers. Our
results identify and illustrate factors that complicate flystem’s
energy consumption and performance, including nonlitgairi-
stability, and multi-dimensionality. Our results providéasis for
future work on modeling energy consumption and performaace
support principled design of controllable energy-awargeys.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation (efficiency and effectiveneSs}
[Performance of Systemf Modeling techniques; 1.2.84rtificial
Intelligence]: Problem Solving, Control Methods, and Search—
Control theory

General Terms
Measurement, Performance

Keywords

Energy efficiency, System identification, Data compression

1. INTRODUCTION

The carbon footprint of the IT industry, though only 2% of the
world economy, is estimated to be equal to that of the entire a
ation industry [7]. Energy consumption is emerging as dcait
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issue in the design of computing systems [5, 14, 20, 22, 2933
The goals of energy-aware system design include savingygner
without sacrificing performance, and supporting flexiblgnammic
trade-offs between energy consumption and performanceurate
models of energy consumption and performance provide afpun
tion for the design of energy-aware systems.

A large portion of the energy consumed by IT infrastructwre i
due to desktop machines and commercial servers [8]. Morgove
the total amount of electronic data stored world-wide iggex-
ponentially. By 2020, that figure is expected to reach 35aZett
Bytes [16]; energy consumption is expected to grow just pisiha
Thus, it is desirable to develop highly scalable solutidret are
significantly better than today’s solutions.

In prior work, we analyzed the energy and performance pgofile
of server workloads, such as Web servers, email servers)alsd
servers, and file compression [24, 35]. We discovered laegead
tions for both performance and energy consumption—as msich a
10 times—suggesting that there are significant opporesiit save
energy and improve performance. Our past work consideiezbth
systems only as black-boxes and reported their performande
energy consumption without a deeper understanding of thetex
reasons for those deviations.

Seeking a better understanding of the system internalseseth
workloads, we tried to identify their internal behavior,\ge could
build advanced controllers to better manage both energperidr-
mance. Unfortunately, our initial attempts to identifyshesystems
using traditional linear-systems identification techmigjuesulted
in poor models with low prediction accuracy (under 50%).

In this paper, we shed considerable light on the complexitie
derlying systems-software energy consumption and pegnog
In particular, we present an in-depth experimental evaloaif the
energy consumption and performance of a relatively simetdar
miliar file-compression workload as a representative vwaélin-
volving both substantial CPU usage and disk 1/0. We alsoyaeal
the effects of several input parameters, including choiceom-
pression algorithm, compression level, file type, persisséorage
media (e.g., SATA, SAS, and SSD), CPU Dynamic Voltage and
Frequency Scaling (DVFS) level, and disk 1/0 scheduler—uaH
der the Linux operating system.

Our experimental results show that energy consumption and p
formance are unexpectedly complex and cannot be easilylethde
using standard system-identification techniques. We iiyesgv-
eral factors that contribute to this complexity, in termsnohlin-
earity, instability, and multi-dimensionality. Our resiksuggest
that hybrid discrete-continuous models [1, 18] may proddsiit-
able foundation for modeling and control of energy consiompt
and performance in energy-aware systems software.

The rest of the paper is organized as follows. Section 2 con-



siders related work. Section 3 provides the requisite backgl.
Section 4 provides the mativation for this work. Section &gants
our experimental setup and benchmarks. Section 6 contairexe
perimental results. We conclude in Section 7 and descritbegu
work in Section 8.

2. RELATED WORK

This section places our work in the context of past work.

2.1 Energy Efficiency

Many energy-saving techniques have been developed attmth t
hardware and software levels. For example, virtualizatibows
multiple Operating Systems (OSs) to run on one server, rsjpari
most of the resources, thereby reducing energy consumptiore-
over, there are energy-aware cache replacement algoriéhbhs
energy-aware task and interrupt management techniqugsoi37
line learning-based power management [10], predictiva dedup-
ing and replication [14], and energy-aware file systems gandi-
tion pruning techniques [35]. Some modeling based appesach
have been proposed by Isci, Sarikaya, and others [21, 34heSo
of our own past studies show significant energy savings plessi
in commodity Linux servers running common workloads such as
Web, email, database, compression, etc. [24, 35]. Gepeoglt
timal use of energy-saving techniques requires accuratelnof
system energy consumption with respect to appropriatenetes;
the work described in this paper is a step towards the dewedap
of such models.

2.2 Energy Consumption of Data Compression

Our prior work, conducted by Kothiyal et al., evaluated gyer
consumption and performance of data compression on s¢@4rs
and demonstrated that compression reduces energy coneanmpt
some situations but not all. A careful application of congsien
can save energy in some cases by a factor af, Hut a careless ap-
plication of compression can easily waste energy and slafope
mance by 208 . In contrast to the work described in this paper, our
past study did not focus on accurate modeling of energy ¢opsu
tion and hence did not discuss system identification or aealye
behavioral characteristics of energy consumption ancpadnce
that make accurate modeling difficult.

3. BACKGROUND

In this section, we describe background work in terms of com-
pression algorithms (Section 3.1), I/O schedulers (Se&ig), and
power and energy consumption (Section 3.3).

3.1 Compression Algorithms

In Linux, there are three main compression utilitiggi p, bzi -
p2, andl zop, each of which has compression levels ranging from
level 1 to level 9. A higher level tries to achieve a better poss-
sion ratio at the expense of additional CPU cycles.

Gzip [15] is based on thBeFLATE algorithm, which is a com-
bination of LZ77 and Huffman coding. Bzip2 uses the Burrows-
Wheeler transform to convert frequently recurring chaadce-
guences into strings of identical letters and then applieeee-to-
front transform and Huffman coding [6]. Lzop [30] uses theQ.Z
library and produces files a bit larger than Gzip’s but witloaer
CPU use. Fof zop, compression levels 1 to 6 are identical.

3.2 1/O Schedulers

I/0O scheduling has been studied aggressively [2, 4, 19923
pecially since the speed of disk lags far behind the speedPtf C
and RAM.

Normally, a disk scheduler tries to maintain a balance betwe
fairness, performance, and latency (or real time guarahté&ir-
ness guarantees that every process has fair share of thesdoce
disk on a multi-user system. Performance requires the sitdred
to serve requests predictably to save both time and energy. L
tency means that any request must be served within a given tim
limit. There are four main I/O schedulers in Linux systems$) (
CFQ (the default), which emphasizes fairness; AR)JTICIPATORY,
which emphasizes performance; (8JADLINE, which is designed
for low latency and real time access; and Xd)op, which is a sim-
ple first-come-first-served scheduler.

3.3 Power and Energy Consumption

In this subsection, we introduce the power and energy copsum
tion patterns for both CPU and disk, since our workload ishbot
CPU-intensive and disk-intensive.

The power consumed in a processor consists of three partions
dynamic powerPiynamic, Static powerPsq+ic, and short-circuit
power [26]. For Complementary Metal Oxide Semiconductdvi{C
0S) chips, dynamic power refers to the energy consumption in
switching transistors, while static power refers to the ftayleak-
age current when a transistor is off. Short-circuit powecas-
sumed only during signal transitions and is insignificarite Ty-
namic power is calculated as follows:

Paynamic = C x V2 x f 1)
whereC' is the capacitance per cycl¥, is the supply voltage and
f is the processor clock frequency.

Although dynamic power is the primary source of power digsip
tion in CMOS chips, static power is becoming an importaréss
Static power is computed as follows:

Pstatic =V X Itp + Vis X (—Ijn + —Ibn) (2)
wherel,, is the sub-threshold leakage currérit, is the body bias
voltage, and;,, and I, are the drain and source to body junction
leakage current, respectively.

Processors with Dynamic Voltage and Frequency Scaling ®VF
are capable of operating at multiple frequency and voltegels.
Dynamic power is considered to be the dominant portion optbe
cessor’s energy consumption. As seen from Equatidf s amic
depends linearly on frequency and quadratically on voltagmv-
ever, operating at a lower voltage and frequency does netssac-
ily result in overall energy savings, as we see later in $adi3.
The main reason is that when running at a lower frequencguit u
ally takes longer to accomplish the same work, which careise
the total energy consumption.

The energy consumed by a Hard Disk Drive (HDD) follows the
following equation:

(©)

where E;,.,, refers to the energy consumed by the spinning plat-
ter, andE..q refers to the energy consumption incurred by the
movement of the disk head.

Edis/c - Espin + Ehead



4. MOTIVATION

Section 4.1 gives some background on system identificafien-
tion 4.2 describes the problems we encountered when wettried
apply system identification techniques to model the enemy c
sumption of our workload.

4.1 System ldentification

CPU Frequency

Energy
Compression Algorithm

Plant

Compression Level Performance

(Compressor)

File Type

Figure 1: Plant: Compressor

System identification is the first step of control enginegtimat
uses statistical methods to build models from observedvwaha

As shown in Figure 1, our system has four inputs: compression
algorithm, compression level, file type, and CPU frequeroyr
system has two outputs: energy and performance. Applyifig of
the-shelf technology for system identification, such as MAB'’s
system identification tool-box [25] has considerable appace
one needs to know only the inputs and outputs. It does notreequ
a detailed understanding of the system’s behavior. By apgpista-
tistical techniques to data collected from the target sps&ystem
identification attempts to construct a mathematical motitiere-
lationships between inputs and outputs.

A typical workflow for system identification follows theseufio
steps: (1) Specify the model in the form of inputs and outpatsl
design experiments to collect data; (2) Apply the systemtifie
cation algorithm to estimate the values of the coefficieritthe
model; (3) Verify the accuracy of the resulting model by eading
it against additional measured data; (4) Decide whethemihael
is acceptable. If the prediction accuracy is unacceptaily bne
or more steps in the workflow need to be revisited.

In our experiments, we used a traditional linear state-espaadel
of the following form:

z(n+1) = Az(n) + Bu(n) + Kw(n)
y(n) = Cx(n) + Du(n) +w(n)

(4a)
(4b)

wherewu(n) are the inputsy(n) are the outputsy(n) the internal
states of the plant, and(n) is a white Gaussian noise representing
uncontrollable inputs and output measurement errors, (ermrs
introduced by the default system daemons) at im&he parame-

ter z(n + 1) denotes the next internal states of the plant. Matrices
A, B, C, D, andK denote the significance or weight that each el-
ement in the input, output, and Gaussian noise have in ditiegn
the next state and output of the system.

4.2 Problems Encountered

Our system is a simple file compressor. System inputan be
file type ZERO, TEXT, BINARY, Or RANDOM), compression level
(1 to 9), compression algorithmcgip, BzIP2, LZOP, Or NONE
for no compression), and CPU frequency/voltage (eightlavis
choices). We considered energy consumption and perforenasnc
the outputsy.

The system inputs and outputs must be quantified in order-to ap
ply system identification. Energy is measured in Watt-ho&rsr-

measured
predicted; fit: 24.01%

neray.m |

Energy (0.1 Watt-Hours)

measured
predicted; fit: 17.39%

Perf (Files/Sec)

Figure 2: A typical example for poor accuracy. The two inputs

are File Type and CPU Frequency. Compression algorithm is
fixed to be gzip along with its default compression level. The
two outputs are energy and performance which are normalized
to be zero-mean.

ond. The CPU frequency is measured in Hertz. However, iffis di
cult to choose appropriate numerical values to representyfies,
compression levels, and compression algorithms.

The compression level is numerical, but the level numbecis a
tually just a label (in other words, a name); the numerichlehas
no direct significance other than ordering. Similarly, fitpes and
compression algorithms are naturally identified by disgreion-
numerical labels but must be represented numerically ttyaphp
system identification algorithm. The numbers chosen aneifsig
cant, because they must be related to the next states anatutp
by Equation 4 for system identification to succeed and shoatd
impose arbitrary quantitative relationships. However,hage no
a-priori way of deciding what values to use.

We tried a simple linear approach using consecutive ingeger
(e.g., 0 forNONE, 1 for czIp, 2 for BzIP2 and 3 forLzOP), as
well as other numbers and ordering. We also tried a non4linea
approach, assigning each compression algorithm a numies-co
sponding to its compression ratio; but the compression reatiies
with file type and hence is not a fixed value associated solély w
the compression algorithm.

In conclusion, labels are similar to the discrete statesfofite
automaton. In our case, they represent different modesstéisy
behavior; that is, they represent the modes of a hybrid aatimm
Any attempt to give them a numerical meaning is doomed to fail

We prepared two data sets of the same size to identify thersyst
One data set is used to estimate the parameters of the maaigl us
least-squares techniques; the other is used to evaluatgutiity
of the model fit. Accuracy is the percentage of model fit. We ap-
plied the MATLAB's system identification tool-box to learimgle-
Input-Single-Output (SISO) and other system models. Hewev
we achieved only limited accuracy, less than 50% in overAll.
typical error graph appears in Figure 2.

This was clearly insufficient as a basis to design a contrdite
order to better understand the causes of the problem, anddo fi
ways of splitting the nonlinear behavior into segments taait be
more accurately modeled as linear systems, we decideddy tte
system’s energy consumption and performance in more detail

5. METHODOLOGY

This section details our experimental setup and benchmarks

5.1 Experimental Setup

We conducted our experiments on a Dell PowerEdge R710 server
consisting of one quad-core Ing@l Xeon™ Nehalem CPU with

formance is measured as the number of files compressed per seca maximum frequency of 2.395GHz with dynamic frequency and



voltage scaling (DVFS) support: 7 different frequencies atif-
ference of 133MHz each without the Turbo Mode, and 8 differ-
ent frequencies at a difference of 1IMHZ for the top 2 freqiesc
and a difference of 133MHZ for the remaining 7 frequenciegwi
the Turbo Mode on. The machine has 24GB RAM, out of which
we used only 2GB to force I/O to take place. The server has two

In order to set the 1/O scheduler, we write the desired sdeedu
name td sys/ bl ock/ $dev/ queue/ schedul er and launch
the experiments after that.

We ran the tests on the specified disk drive, formatted witt3 Ex
file system and mounted using the default options. To avaibiog
effects, we unmounted the file system after each test iterat

146GB Seagate SAS disks with 15,000RPM rotation speed and aflush the data in memory to disk. Our measurements include thi

16MB cache, two 250GB internal Fujitsu SATA disks with 7,200
RPM rotation speed and 16MB cache, and one 80GB Intel SSD
disk model SSDSA2MHO080G1C5. We ran all of our benchmarks
on all of these three different kinds of disk drives. The semwas
running the Linux 2.6.18 kernel with tlecpi _cpuf r eq module
installed to enable software control of the CPU frequency.

We connected the server to a WattsUP Pro ES in-line power me-
ter [12], which measures the energy drawn by a device plugged
into the meter's receptacle. The power meter uses nonifeolat
memory to store measurements every second. Its resolsgtion i
Watt-hours (1 Watt-hour = 3,600 Joules). The accuraciliss%
of the measured value plus a constant error=0f3 Watt-hours.

Its resolution for power measurements is 0.1 Watts. We used t
wat t sup Linux utility to download the recorded data from the
meter over a USB interface to the test machine.

We conducted 216 combinations of experiments (repeated five
times each), and collected a large data set: 4,810,320 deuts fn
total for a single run. Running one complete set of benchetabk
about 15 calendar days to complete. We ran and reran expgsme
many times over a period of more than a year, as we kept refining
our experimentation methodology and developed autométials.
Retrieving information from this large data set and drawfiggres
were made simpler thanks to the automation tools we built.

To automate the measurements, we developed a tool called aut
ebench, written in Perl and Bash, that helped us benchmarérth
ergy and power consumption under different scenarios duilech-
ing virst at to record the number of block reads and block writes.
We measured the total number of block reads and writes at the
whole-system level; this saved us significant time and effor

5.2 Benchmarks

The workload for each test is to compress 20 identical filek wi
20 threads concurrently, and write the compressed files k. di
Each file is 65MB. Several factors influence energy conswompti
for data compression, as we will discuss in Section 6.3. dieioto
fully explore these factors and their interactions, we cmted ex-
periments for each combination. Specifically, we consitlerfol-
lowing factors: persistent storage media (SAS disk, SABkdand
SSD disk), I/0 scheduler (anticipatory, CFQ, deadline am{®),
compression algorithm (gzip, bzip2, and Izop) and comjmwass
level (1-9), and file type (text, binary, and random). We taa t
above workload for each combination of these factors. Betwe
each compression level, we inserted some sleeping intes@that
each experiment for each compression level started at the eg-
act time. The elapsed time for compression plus the sleeéptag
val was the same and fixed during each compression leveldar or
to align the graphs for each compression level. Auto-ebénob-
sponsible for repeatedly launching the experiments anordéety
the results multiple times and under multiple scenarios. éper-
iments follow this pattern unless otherwise noted.

We ran all the tests five times and computed the 95% confidence
intervals using the Student-t distribution. The error srswn in
our graphs are the half widths of the 95% confidence intervaés
used version 1.3.5 afzi p, version 1.0.3 obzi p2, and version
v1.02rcl ofl zop.

The 1/0 scheduler can be set per device and is easy to configure

flushing time.

6. EVALUATION

In this section, we provide evaluation and deep analysishier
energy consumption pattern of our file-compression workl&ec-
tions 6.1, 6.2, and 6.3 focus on non-linearity, instahibtyd multi-
dimensionality, respectively.

6.1 Nonlinearity

For compression algorithms, a higher compression levelllysu
means a better compression ratio (CR). Table 1 shows the €R fo
all algorithms and levels.

File Type
Tool Text | Binary | Rand
gz-1 3.61 2.14 1.00
gz-2 3.77| 2.18 1.00
9z-3 390 | 221 1.00
gz-4 4.18 2.26 1.00
gz-5 435| 2.30 1.00
gz-6 443 | 2.32 1.00
gz-7 4.45 2.33 1.00
gz-8 446 | 2.33 1.00
gz-9 4.46 2.33 1.00
bz-1 4.72 2.38 0.99
bz-2 5.02| 2.45 0.99
bz-3 5.18 2.53 0.99
bz-4 5.28 2.57 0.99
bz-5 5.36 | 2.60 0.99
bz-6 5.40 2.64 0.99
bz-7 5.44 2.65 1.00
bz-8 549 | 2.67 1.00
bz-9 5.50 2.69 1.00
[zo-(1~6) | 2.82| 1.77 | 1.00
1zo-7 3.80| 2.15 1.00
1z0-8 3.84 2.16 1.00
1z0-9 3.84 2.17 1.00

Table 1: Compression ratios achieved by various compressio
utilities and levels

Although it is true that a higher compression level gengrall
commits fewer blocks to disk for the same workload and hence
might save energy due to reduced I/O activity, the overadirgn
consumption might not follow the same pattern. One posséde
son is that the CPU may have to perform a lot more work in order
to achieve a better CR, which takes longer time and consurogs m
energy. The actual energy consumed under certain worklisads
fact a trade-off between these factors. Therefore, as wesean
from Figure 3, which presents measurementsgor p, bzi p2,
andl zop, the energy consumption is not a linear function of the
compression level. Moreover, it is also not monotonicatigreas-
ing with the compression level. For example, in Figure 3#bgrgy
consumption peaks at level 7, then unexpectedly drops elslé/
and 9.
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Comparing the graphs in the left and right columns of Figyre 3
we also observe that the energy consumption for the whotersys
depends heavily on the total elapsed time during the corsiares
period [9, 32].

As we can see from Figure 3(a), in the casg@of p, the energy
consumption goes up non-linearly and then goes down sjigist!
the compression level increases. Figure 3(b) shows thatdipsed
time follows the same trend. In the caselfi p2 as shown in
Figure 3(c), the energy consumption is relatively stabiereas-
ing only slightly across all 9 compression levels, which gegis

slightly fewer blocks are written to disk. Figure 3(f) shdwat the
elapsed time strictly follows the same pattern.

In summary, it is clear that the energy consumption and ethps
time relate non-linearly and in some cases non-monotdpieéth
the compression level. Consequently, controlling theesy&t en-
ergy usage by adjusting the compression level is complex.

6.2 Instability

This section examines how the power consumption variesiguri

that a balance between the CPU energy consumption and disk en€ach run. We found that in some cases, the power consumption

ergy consumption has been achieved. The elapsed time, shown
Figure 3(d), follows the same pattern. Witlzop, as shown in
Figure 3(e), the energy consumption is the same for the fixst s
identical compression levels and then increases monatibniout
non-linearly. This reflects that for the last three compoessev-
els, due to the longer elapsed time, the entire system (irajuthe
disk drive, even when it is just spinning, not reading or ing} is
consuming more power at higher compression levels evergthou

response is unstable and fluctuates significantly, as weaeafn@am
Figures 4, 6, and 7. This should be taken into consideratioernwv
designing power-aware systems.

Our experiments revealed that the cause of those fluctisdtam
in the interleavings between disk reads and writes when fd C
frequency is maintained at the same level. We discuss thiie
detail below.

Forgzi p (Figure 4(a)), the power consumption response is rel-
atively stable from level 1 to level 7. However, it becomestable
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Figure 6: Relationship between the rates of block reads/wtes and power consumption of Izop. The CPU frequency is set tihe

highest frequency in the above experiments. One can see fluetions from levels 1 to 7.

200 Bzip2, Random, H-Freq, SATA, CFQ level 1t0 9 ——

~ 150 1
9
8
=
5 100 i i (ol 1
g level 1 level 2 level 3 level 4 level 5 level 6 level 7 ° level 8" level 9
a

50 1

0 . . . . .

0 200 400 600 800 1000 1200
Time (s)
(a) Power consumption response for each level of compmressibzip2 with SATA and random files

= 160 —— -
E Bzip2, Random, H-Freq, SATA, CFQ Block in
§ 140 Block out B
§ 120k level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9 i
n
g 100 1
n
< 80f g
K<}
2 e0f 1
o
& 40t 1
E
Z [ PATR Tk o $i s i SRR y i 1

o [ eI [” i ( R AT /W WA, (R /\w Vi ORBRR L i

0 200 400 600 800 1000 1200
Time (s)

(b) Rate of block reads and writes for each level of compoassf bzip2 with SATA and random files
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in levels 8 and 9. Furthermore, Figure 4(b) reveals that e at
which blocks are read exhibits the same pattern of stalilitgv-
els 1 to 7 and fluctuation at levels 8 and 9. Looking at Figul® 4(
in detail, especially in levels 8 and level 9, it also revealgre
frequent interleavings between block reads and writes.|dwals
1 through 4, there are just small fluctuations in power comsum
tion towards the end of the compression job. A similar pattg-
pears in the interleavings between block reads and writds¥els

energy increases as a function of compression level. Hantheze
is also a possibility that when the CPU frequency is lowes, riite
at which the CPU compresses data in the blocks will be claser t
the rate at which the disk drive produces blocks. If this leaysp it
can save energy at the end, since there is no wasted energy.

The disk 1/0 scheduler influences the order of disk writes and
hence may affect the energy consumption. Figure 9 showsthe e
ergy consumption with 4 different 1/0O schedulers. We cantbae

1 to 4. Moreover, the stable response in levels 5, 6, and 7 sug-anticipatory and CFQ have largely the same effect, whilelliiea

gests equally distributed interleavings between the ratdgock
reads and writes. We believe that when block reads and vaites
interleaved beyond a certain level, 1/0 scheduler algoritifand
possibly algorithms inside the disk) begin to break down tred
efficiency goes down considerably as a result.

and NOOP also have similar effect to each other but diffefrent
anticipatory or CFQ. As the unit for the y axis is Watt-houts
difference in energy consumption between anticipatory@RQ is
actually significant, especially for larger workloads.

The file type affects different compression strategies fwhe

For bzi p2 (Figure 5(a)), the power consumption response is compression algorithm and hence plays a role in energy ocamsu

relatively stable. In Figure 5(b), we can see clearly that ridte
of disk block reads is maintained at a stable level, and tteat
which disk blocks are written is equally distributed thrbogt the
compression period. This leads the power consumption nsgpto
be stable.

For | zop (Figure 6(a)), the power consumption response fol-
lows a different pattern compared with the previous two ades.
We can see from Figure 6(b) that for the first six levels, tkerkte
is much higher than in the remaining levels. However, theisun

tion. The left column of Figure 10 shows the energy consuompti

of the compression workload for different file types. We $ezt the
workload with binary files consumes more energy than the work
load with text files when other parameters are the same; thlkem
sense because text files have more common patterns that can be
compressed (e.g., lower entropy). Also for text and bindesfi
more energy is consumed with compression level 9 than witérot
compression levels. Surprisingly, for random files, levelfhs

out to be the most energy-consuming one, instead of level 8. W

shorter in terms of elapsed time, as we can see from the width o conclude that the file type affects the energy consumptisparse

the active intervals, and the interleavings between thesmitblock
reads and writes are in some degree not equally distribuiets
the compression level, resulting in a few fluctuations tasahe

in a manner that is not easy to predict, and an approach iimgplv
adaptive feedback control may thus be required.
Different disk types usually have different electronicd ermw-

end of each compression level. For levels 8 and 9, since the in are, different physical features, and different storageegies. This

terleavings are equally distributed, the power responsglasively
stable. The fluctuations in level 7 suggest there exists walgq
distributed interleavings between the rates of disk readsaaites.

should affect energy consumption. The right column of Fegl®
shows the energy consumption of the compression workload fo
different persistent storage media. As expected, SAS isrgén

An even more complicated example appears in Figure 7(a). In faster than SATA, so the workload runs faster and consursssle

this scenario, random files are being compressed and SAT#Ris t
persistent storage media. The power response is extremstg-u
ble in each compression level. The interleavings betweemates
of block reads and writes are ill regulated, as we can see ffigm
ure 7(b). This suggests that the harder the file is to com[jeegs
high entropy), the less predictable the performance andygicen-
sumption are. There is no simple way to model systems ekigpit
such complex and diverse behavior.

We conclude that the power response exhibits instabilitgamy
cases. This contributes to the complexity of the energyaiséthe
system and makes controlling a serious challenge.

6.3 Multi-Dimensionality

In this section, we illustrate the dependence of the eneogy ¢
sumption for our system on several factors, such as CPUdrey
compression algorithm and level, file type, persistentagferme-
dia, and disk I/O scheduler.

The compression algorithm is clearly an important factoerf

ergy consumption here, as we have already seen in Figurer3. Fo

example,bzi p2 takes much longer time to compress tharop
does. Thushzi p2 usually takes more energy to compress than
| zop does.

One might expect that a lower CPU frequency will result indow
energy consumption. However, as we can see from Figureagda)
8(b), that is not necessarily true. With lower CPU frequerbg
energy consumption is actually increased for all the cosgiom
levels. The reason is that when the CPU frequency is lowkés
longer to finish the compression, which generally resultshilgher
total energy consumption. We can also see from Figure 8 trat f
both the highest frequency and the lowest frequency, thewoad

ergy, 2-12% less. SSD is the fastest storage media amoriydee t
consuming the least energy, 3-5% less than SAS and 6-16% less
than SATA. This is because an SSD contains no energy-congumi
moving parts (cf. Equation 3) and stores data on non-velfiaksh
memory chips using a Flash Translation Layer (FTL) thatvedlo

the linear device to look like a traditional disk. These tesalso
show that the workload is not completely CPU bound, evenghou

itis CPU intensive.

In summary, we observe that the total energy consumption of
computer systems follows a complicated pattern, becawserth
ergy consumption for each subsystem contributes to it. s
gests that instead of trying to develop system-level enargglels
purely in a bottom-up fashion, a more practical approach begyp
use machine learning methods in the development of suchlmode
to guide the design of energy-aware systems.

7. CONCLUSIONS

Accurate models of energy consumption and performance are
vital for the design and implementation of energy-efficisgs-
tems. Our detailed experimental results show that the hehav
of these quantities is far more complicated than one migheetx
even for a relatively simple workload such as data compoassi
The complexity is reflected in nonlinearity, instabilitypcamulti-
dimensionality. These factors must be considered in thigded
energy-efficient systems.

Although we have measured and analyzed the effects of devera
factors, there may be other important factors to considgredding
on the system, such as the workload itself, and even thersamnde
machine-room temperatures.
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8. FUTURE WORK

Software systems often perform poorly because of poor iandl
of dynamic changes in workloads and resources (e.g., duslto f
ures). The problem of dynamic changes exists in many engitee
disciplines, such as aeronautic, electrical and mechencaneer-
ing [17]. Feedback control theory [10, 27, 31, 36, 44, 45] besn
proven effective in the design of some energy-efficient aateip
systems. We plan to apply control theory to complex softvegse
tems that can balance performance and energy consumptien gi
user preferences.

To achieve this goal, we first need to build our knowledge ef th
energy and performance of the complex systems. Our critieal
surements and analysis of energy and performance pattdttiis w
the end help building better energy-aware software systbets
ter schedulers [3, 28, 40], better operating systems and leeer
controllers [11]. We plan to investigate techniques to owere
the non-linearity of systems, by exploring linearizatieshniques

such as segmenting a behavior into groups where each group ca
be modeled linearly, and combining the groups using a state m
chine. We have already begun to explore the design of céertsol
that can handle multiple inputs, multiple outputs, and ipldtin-
ternal states (e.g., MIMO).

There are several directions for future work on measuresreht
modeling of energy consumption. Currently, we can only meas
the energy consumption of the entire system. However, inesom
situations, it may be desirable to measure, model, and aaenr
ergy consumption of individual components, such as the GRaJ,
disk drive [42], and so on. In addition, to better understémel
dependence of the energy consumption of file compressioheon t
file contents, we plan to generate and use files of the samétitpe
with different entropy levels [13].

Moreover, because it is so tedious to measure the energy con-
sumption under so many different scenarios, we plan to coati
developing the auto-ebench tool-set mentioned in Sectitmnahi-
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tomate energy benchmarking, similar to what auto-pilof B&s

to automate file system benchmarking. We plan to enhance auto

ebench to support additional features such as automatialatibn
of confidence intervals, automatic detection of memory deakd
intelligent analysis of results.
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