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Abstract

Deduplication is a popular component of modern stor-
age systems, with a wide variety of approaches. Unlike
traditional storage systems, deduplication performance
depends on data content as well as access patterns and
meta-data characteristics. Most datasets that have been
used to evaluate deduplication systems are either unrep-
resentative, or unavailable due to privacy issues, prevent-
ing easy comparison of competing algorithms. Under-
standing how both content and meta-data evolve is criti-
cal to the realistic evaluation of deduplication systems.

We developed a generic model of file system changes
based on properties measured on terabytes of real, di-
verse storage systems. Our model plugs into a generic
framework for emulating file system changes. Building
on observations from specific environments, the model
can generate an initial file system followed by ongoing
modifications that emulate the distribution of duplicates
and file sizes, realistic changes to existing files, and file
system growth. In our experiments we were able to gen-
erate a 4TB dataset within 13 hours on a machine with a
single disk drive. The relative error of emulated param-
eters depends on the model size but remains within 15%
of real-world observations.

1 Introduction
The amount of data that enterprises need to store in-
creases faster than prices drop, causing businesses to
spend ever more on storage. One way to reduce costs
is deduplication, in which repeated data is replaced by
references to a unique copy; this approach is effective in
cases where data is highly redundant [11,15,17]. For ex-
ample, typical backups contain copies of the same files
captured at different times, resulting in deduplication ra-
tios as high as 95% [9]. Likewise, virtualized environ-
ments often store similar virtual machines [11]. Dedu-
plication can be useful even in primary storage [15], be-
cause users often share similar data such as common
project files or recordings of popular songs.

The significant space savings offered by deduplication
have made it an almost mandatory part of the modern
enterprise storage stack [5,16]. But there are many vari-
ations in how deduplication is implemented and which
optimizations are applied. Because of this variety and
the large number of recently published papers in the
area, it is important to be able to accurately compare the
performance of deduplication systems.

The standard approach to deduplication is to divide
the data into chunks, hash them, and look up the result in

an index. Hashing is straightforward; chunking is well
understood but sensitive to parameter settings. The in-
dexing step is the most challenging because of the im-
mense number of chunks found in real systems.

The chunking parameters and indexing method lead to
three primary evaluation criteria for deduplication sys-
tems: (1) space savings, (2) performance (throughput
and latency), and (3) resource usage (disk, CPU, and
memory). All three metrics are affected by the data
used for the evaluation and the specific hardware con-
figuration. Although previous storage systems could be
evaluated based only on the I/O operations issued, dedu-
plication systems need the actual content (or a realistic
re-creation) to exercise caching and index structures.

Datasets used in deduplication research can be
roughly classified into two categories. (1) Real data from
customers or users, which has the advantage of repre-
senting actual workloads [6, 15]. However, most such
data is restricted and has not been released for compar-
ative studies. (2) Data derived from publicly available
releases of software sources or binaries [10, 24]. But
such data cannot be considered as representative of the
general user population. As a result, neither academia
nor industry have wide access to representative datasets
for unbiased comparison of deduplication systems.

We created a framework for controllable data gen-
eration, suitable for evaluating deduplication systems.
Our dataset generator operates at the file-system level,
a common denominator in most deduplication systems:
even block- and network-level deduplicators often pro-
cess file-system data. Our generator produces an initial
file system image or uses an existing file system as a
starting point. It then mutates the file system according
to a mutation profile. To create profiles, we analyzed
data and meta-data changes in several public and private
datasets: home directories, system logs, email and Web
servers, and a version control repository. The total size
of our datasets approaches 10TB; the sum of observation
periods exceeds one year, with the longest single dataset
exceeding 6 months’ worth of recordings.

Our framework is versatile, modular, and efficient.
We use an in-memory file system tree that can be popu-
lated and mutated using a series of composable modules.
Researchers can easily customize modules to emulate
file system changes they observe. After all appropriate
mutations are done, the in-memory tree can be quickly
written to disk. For example, we generated a 4TB file
system on a machine with a single drive in only 13 hours,
12 of which were spent writing data to the drive.
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2 Previous Datasets
To quantify the lack of readily available and representa-
tive datasets, we surveyed 33 deduplication papers pub-
lished in major conferences in 2000–2011: ten papers
were Usenix ATC, ten in Usenix FAST, four in SYS-
TOR, two in IEEE MSST, and the remaining seven else-
where. We classified 120 datasets used in these papers
as: (1) Private datasets accessible only to particular au-
thors; (2) Public datasets which are hard or impossible
to reproduce (e.g., CNN web-site snapshots on certain
dates); (3) Artificially synthesized datasets; and (4) Pub-
lic datasets that are easily reproducible by anyone.

We found that 29 papers (89%) used at least one pri-
vate dataset for evaluation. The remaining four papers
(11%) used artificially synthesized datasets, but details
of the synthesis were omitted. This makes it nearly im-
possible to fairly compare many papers among the 33
surveyed. Across all datasets, 64 (53%) were private, 17
(14%) were public but hard to reproduce, and 11 (9%)
were synthetic datasets without generation details. In to-
tal, 76% of the datasets were unusable for cross-system
evaluation. Of the 28 datasets (24%) we characterized
as public, twenty were smaller than 1GB in logical size,
much too small to evaluate any real deduplication sys-
tem. The remaining eight datasets contained various
operating system distributions in different formats: in-
stalled, ISO, or VM images.

Clearly, the few publicly available datasets do not ade-
quately represent the entirety of real-world information.
But releasing large real datasets is challenging for pri-
vacy reasons, and the sheer size of such datasets makes
them unwieldy to distribute. Some researchers have sug-
gested releasing hashes of files or file data rather than the
data itself, to reduce the overall size of the released infor-
mation and to avoid leaking private information. Unfor-
tunately, hashes alone are insufficient: much effort goes
into chunking algorithms, and there is no clear winning
deduplication strategy because it often depends on the
input data and workload being deduplicated.

3 Emulation Framework
In this section we first explain the generic approach we
took for dataset generation and justify why it reflects
many real-world situations. We then present the main
components of our framework and their interactions. For
the rest of the paper, we use the term meta-data to refer
to the file system name-space (file names, types, sizes,
directory depths, etc.), while content refers to the actual
data within the files.

3.1 Generation Methods
Real-life file systems evolve over time as users and ap-
plications create, delete, copy, modify, and back up files.
This activity produces several kinds of correlated infor-

mation. Examples include 1) Identical downloaded files;
2) Users making copies by hand; 3) Source-control sys-
tems making copies; 4) Copies edited and modified by
users and applications; 5) Full and partial backups re-
peatedly preserving the same files; and 6) Applications
creating standard headers, footers, and templates.

To emulate real-world activity, one must account for
all these sources of duplication. One option would be
to carefully construct a statistical model that generates
duplicate content. But it is difficult to build a statistics-
driven system that can produce correlated output of the
type needed for this project. We considered directly gen-
erating a file system containing duplicate content, but
rejected the approach as impractical and non-scalable.

Instead, we emulate the evolution of real file systems.
We begin with a simulated initial snapshot of the file
system at a given time. (We use the term “snapshot” to
refer to the complete state of a file system; our usage is
distinct from the copy-on-write snapshotting technology
available in some systems.) The initial snapshot can be
based on a live file system or can be artificially gener-
ated by a system such as Impressions [1]. In either case,
we evolve the snapshot over time by applying mutations
that simulate the activities that generate both unique and
duplicate content. Because our evolution is based on
the way real users and applications change file systems,
our approach is able to generate file systems and backup
streams that accurately simulate real-world conditions,
while offering the researcher the flexibility to tune vari-
ous parameters to match a given situation.

Our mutation process can operate on file systems in
two dimensions: space and time. The “space” dimen-
sion is equivalent to a single snapshot, and is useful to
emulate deduplication in primary storage (e.g., if two
users each have an identical copy of the same file).
“Time” is equivalent to backup workloads, which are
very common in deduplication systems, because snap-
shots are taken within some pre-defined interval (e.g.,
one day). Virtualized environments exhibit both dimen-
sions, since users often create multiple virtual machines
(VMs) with identical file systems that diverge over time
because they are used for different purposes. Our sys-
tem lets researchers create mutators for representative
VM user classes and generate appropriately evolved file
systems. Our system’s ability to support logical changes
in both space and time lets it evaluate deduplication for
all major use cases: primary storage, backup, and virtu-
alized environments.

3.2 Fstree Objects
Deduplication is usually applied to large datasets with
hundreds of GB per snapshot and dozens of snapshots.
Generating and repeatedly mutating a large file system
would be unacceptably slow, so our framework performs
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Figure 1: Action modules and their relationships. Double-boxed rectangles represent action modules and rectangles with rounded
corners designate fstrees and other inputs and outputs.

most of its work without I/O. Output happens only at the
end of the cycle when the actual file system is created.

To avoid excess I/O, we use a small in-memory
representation—an fstree—that stores only the informa-
tion needed for file system generation. This idea is bor-
rowed from the design of Filebench [8]. The fstree con-
tains pointers to directory and file objects. Each di-
rectory tracks its parent and a list of its files and sub-
directories. The file object does not store the file’s
complete content; instead, we keep a list of its logical
chunks, each of which has an identifier that corresponds
to (but is not identical to) its deduplication hash. We
later use the identifier to generate unique content for the
chunk. We use only 4 bytes for a chunk identifier, al-
lowing up to 232 unique chunks. Assuming a 50% dedu-
plication ratio and a 4KB average chunk size, this can
represent 32TB of storage. Note that a single fstree nor-
mally represents a single snapshot, so 32TB is enough
for most modern datasets. For larger datasets, the iden-
tifier field can easily be expanded.

To save memory, we do not track per-object user or
group IDs, permissions, or other properties. If this infor-
mation is needed in a certain model (e.g., if some users
modify their files more often than others), all objects
have a variable-sized private section that can store any
information required by a particular emulation model.

The total size of the fstree depends on the number
of files, directories, and logical chunks. File, directory,
and chunk objects are 29, 36, and 20 bytes, respectively.
Representing a 2TB file system in which the average file
was 16KB and the average directory held ten files would
require 9GB of RAM. A server with 64GB could thus
generate realistic 14TB file systems. Note that this is
the size of a single snapshot, and in many deduplication
studies one wants to look at 2–3 months worth of daily
backups. In this case, one would write a snapshot after
each fstree mutation and then continue with the same in-

memory fstree. In such a scenario, our system is capable
of producing datasets of much larger sizes; e.g., for 90
full backups we could generate 1.2PB of test data.

Our experience has shown that it is often useful to
save fstree objects (the object, not the full file system)
to persistent storage. This allows us to reuse an fstree in
different ways, e.g., representing the behavior of differ-
ent users in a multi-tenant cloud environment. We de-
signed the fstree so that it can be efficiently serialized to
or from disk using only a single sequential I/O. Thus it
takes less than two minutes to save or load a 9GB fstree
on a modern 100MB/sec disk drive. Using a disk array
can make this even faster.

3.3 Fstree Action Modules
An fstree represents a static image of a file system
tree—a snapshot. Our framework defines several oper-
ations on fstrees, which are implemented by pluggable
action modules; Figure 1 demonstrates their relation-
ships. Double-boxed rectangles represent action mod-
ules; rounded ones designate inputs and outputs.
FS-SCAN. One way to obtain an initial fstree object (to
be synthetically modified later) is to scan an existing file
system. The FS-SCAN module does this: it scans content
and meta-data, creates file, directory, and chunk objects,
and populates per-file chunk lists. Different implementa-
tions of this module can collect different levels of detail
about a file system, such as recognizing or ignoring sym-
links, hardlinks, or sparse files, storing or skipping file
permissions, using different chunking algorithms, etc.
FS-PROFILE, FS-IMPRESSIONS, and FS-POPULATE.
Often, an initial file system is not available, or can-
not be released even in the form of an fstree due to
sensitive data. FS-PROFILE, FS-IMPRESSIONS, and FS-
POPULATE address this problem. FS-PROFILE is similar
to FS-SCAN, but does not collect such detailed informa-
tion, instead gathering only a statistical profile. The spe-
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Total Total files Snapshots Avg. snapshot Avg. number of files
Name size (GB) (thousands) & period size (GB) in a snapshot (thousands)
Kernels (Linux 2.6.0–2.6.39) 13 903 40 0.3 23
CentOS (5.0–5.7) 36 1,559 8 4.5 195
Home 3,482 15,352 15 weekly 227 1,023
MacOS 4,080 83,220 71 daily 59 1,173
System Logs 626 2,672 8 weekly 78 334
Sources 1,331 1,112 8 weekly 162 139

Table 1: Summary of analyzed datasets.

cific information collected depends on the implementa-
tion, but we assume it does not reveal sensitive data. We
distinguish sub-parts: the meta profile, which contains
statistics about the meta-data, and the content profile.

Several existing tools can generate a static file sys-
tem image based on a meta-data profile [1, 8], and
any of these can be reused by our system. A pop-
ular option is Impressions [1], which we modified to
produce an fstree object instead of a file system im-
age (FS-IMPRESSIONS). This fstree object is empty,
meaning it contains no information about file contents.
FS-POPULATE fills an empty fstree by creating chunks
based on the content profile. Our current implementa-
tion takes the distribution of duplicates as a parameter;
more sophisticated versions are future work.

The left part of Figure 1 depicts the two current op-
tions for creating initial fstrees. This paper focuses on
the mutation module (below).

FS-MUTATE. FS-MUTATE is a key component of our
approach. It mutates the fstree according to the changes
observed in a real environment. Usually it iterates over
all files and directories in the fstree and deletes, cre-
ates, or modifies them. A single mutation can repre-
sent weekly, daily, or hourly changes; updates produced
by one or more users; etc. FS-MUTATE modules can
be chained as shown in Figure 1 to represent multi-
ple changes corresponding to different users, different
times, etc. Usually, a mutation module is controlled
by a parameterized profile based on real-world obser-
vations. The profile can also be chosen to allow micro-
benchmarking, such as varying the percentage of unique
chunks to observe changes in deduplication behavior. In
addition, if a profile characterizes the changes between
an empty file system and a populated one, FS-MUTATE
can be used to generate an initial file system snapshot.

FS-CREATE. After all mutations are performed, FS-
CREATE generates a final dataset in the form needed
by a particular deduplication system. In the most
common case, FS-CREATE produces a file system by
walking through all objects, creating the correspond-
ing directories and files, and generating file contents
based on the chunk identifiers. Content generation is
implementation-specific; for example, contents might
depend on the file type or on an entropy level. The
important property to preserve is that the same chunk

identifiers result in the same content, and different chunk
identifiers produce different content. FS-CREATE could
also generate tar-like files for input to a backup system,
which can be significantly faster than creating a com-
plete file system because it can use sequential writes.
FS-CREATE could also generate only the files that have
changed since the previous snapshot, emulating data
coming from an incremental backup.

4 Datasets Analyzed
To create a specific implementation of the framework
modules, we analyzed file system changes in six differ-
ent datasets; in each case, we used FS-SCAN to collect
hashes and file system tree characteristics. We chose
two commonly used public datasets, two collected lo-
cally, and two originally presented by Dong et al. [6].

Table 1 describes important characteristics of our six
datasets: total size, number of files, and per-snapshot
averages. Our largest dataset, MacOS, is 4TB in size
and has 83 million files spanning 71 days of snapshots.

Kernels: Unpacked Linux kernel sources from version
2.6.0 to version 2.6.39.

CentOS: Complete installations of eight different re-
leases of the CentOS Linux distribution from ver-
sion 5.0 to 5.7.

Home: Weekly snapshots of students’ home directories
from a shared file system. The files consisted of
source code, binaries, office documents, virtual ma-
chine images, and miscellaneous files.

MacOS: A Mac OS X Enterprise Server that hosts var-
ious services for our research group: email, mail-
ing lists, Web-servers, wiki, Bugzilla, CUPS server,
and an RT trouble-ticketing server.

System Logs: Weekly unpacked backups of a server’s
/var directory, mostly consisting of emails stored
by a list server.

Sources: Weekly unpacked backups of source code and
change logs from a Perforce version control repos-
itory.

Of course, different environments can produce signif-
icantly different datasets. For that reason, our design is
flexible, and our prototype modules are parameterized
by profiles that describe the characteristics of a partic-
ular dataset’s changes. If necessary, other researchers
can use our profile collector to gather appropriate distri-
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butions, or implement a different FS-MUTATE model to
express the changes observed in a specific environment.

For the datasets that we analyzed, we will release all
profiles and module implementations publicly. We ex-
pect that future papers following this project will also
publish their profiles and mutation module implementa-
tions, especially when privacy concerns prevent the re-
lease of the whole dataset. This will allow the commu-
nity to reproduce results and better compare one dedu-
plication system to another.

5 Module Implementations
There are many ways to implement our framework’s
modules. Each corresponds to a model that describes
a dataset’s behavior in a certain environment. An ideal
model should capture the characteristics that most af-
fect the behavior of a deduplication system. In this sec-
tion we first explore the space of parameters that can
affect the performance of a deduplication system, and
then present a model for emulating our datasets’ be-
havior. Our implementation can be downloaded from
https:// avatar.fsl.cs.sunysb.edu/groups/deduplicationpublic/ .

5.1 Space Characteristics
Both content and meta-data characteristics are important
for accurate evaluation of deduplication systems. Fig-
ure 2 shows a rough classification of relevant dataset
characteristics. The list of properties in this section is
not intended to be complete, but rather to demonstrate a
variety of parameters that it might make sense to model.

Previous research has primarily focused on character-
izing static file system snapshots [1]. Instead, we are in-
terested in characterizing the file system’s dynamic prop-
erties (both content and meta-data). Extending the anal-
ysis to multiple snapshots can give us information about
file deletions, creations, and modifications. This in turn
will reflect on the properties of static snapshots.

Any deduplication solution divides a dataset into
chunks of fixed or variable size, indexes their hashes,
and compares new incoming chunks against the index.
If a new hash is already present, the duplicate chunk is
discarded and a mapping that allows the required data to
be located later is updated.

Therefore, the total number of chunks and the number
of unique chunks in a dataset affects the system’s perfor-
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Figure 2: Content and meta-data characteristics of file systems
that are relevant to deduplication system performance.

mance. The performance of some data structures used in
deduplication systems also depends on the distribution
of duplicates, including the percentage of chunks with
a certain number of duplicates and even the ordering of
duplicates. E.g., it is faster to keep the index of hashes in
RAM, but for large datasets a RAM index may be eco-
nomically infeasible. Thus, many deduplication systems
use sophisticated index caches and Bloom filters [25] to
reduce RAM costs, complicating performance analysis.

For many systems, it is also important to capture the
entropy distribution inside the chunks, because most
deduplication systems support local chunk compression
to further reduce space. Compression can be enabled or
disabled intelligently depending on the data type [12].

A deduplication system’s performance depends not
only on content, but also on the file system’s meta-data.
When one measures the performance of a conventional
file system (without deduplication), the file size distribu-
tion and directory depth strongly impact the results [2].
Deduplication is sometimes an addition to existing con-
ventional storage, in which case file sizes and directory
depth will also affect the overall system performance.

The run lengths of unique or duplicated chunks can
also be relevant. If unique chunks follow each other
closely (in space and time), the storage system’s I/O
queues can fill up and throughput can drop. Run lengths
depend on the ways files are modified: pure extension,
as in log files; simple insertion, as for some text files; or
complete rewrites, as in many binary files. Run lengths
can also be indirectly affected by file size distributions,
because it often happens that only a few files in the
dataset change from one backup to another, and the dis-
tance between changed chunks within a backup stream
depends on the sizes of the unchanged files.

Content-aware deduplication systems sometimes use
the file header to detect file types and improve chunk-
ing; others use file owners or permissions to adjust their
deduplication algorithms. Finally, symlinks, hardlinks,
and sparse files are a rudimentary form of deduplication,
and their presence in a dataset can affect deduplication
ratios.

Dependencies. An additional issue is that many of the
parameters mentioned above depend on each other, so
considering their statistical distributions independently
is not possible. For example, imagine that emulating the
changes to a specific snapshot requires removing N files.
We also want the total number of chunks to be realistic,
so we need to remove files of an appropriate size. More-
over, the distribution of duplicates needs to be preserved,
so the files that are removed should contain the appropri-
ate number of unique and duplicated chunks. Preserving
such dependencies is important, and our FS-MUTATE im-
plementation (presented next) allows that.
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5.2 Markov & Distribution (M&D) Model
We call our model M&D because it is based on two ab-
stractions: a Markov model for classifying file changes,
and a multi-dimensional distribution for representing
statistical dependencies between file characteristics.

Markov model. Suppose we have two snapshots of a
file system taken at two points in time: F0 and F1. We
classify files in F0 and F1 into four sets: 1) Fdel: files
that exist in F0, but are missing in F1. 2) Fnew: files that
exist in F1, but are missing in F0. 3) Fmod: files that exist
in both F0 and F1, but were modified. 4) Funmod: files
in F0 and F1 that were not modified. The relationship
between these sets is depicted in Figure 3. In our study,
we identify files by their full pathname, i.e., a file in the
second snapshot with the same pathname as one in the
first is assumed to be a later version of the same file.

Analysis of our datasets showed that the file sets de-
fined above remain relatively stable. Files that were un-
modified between snapshots F0 → F1 tended to remain
unmodified between snapshots F1 → F2. However, files
still migrate between sets, with different rates for dif-
ferent datasets. To capture such behavior we use the
Markov model depicted in Figure 4. Each file in the
fstree has a state assigned to it in accordance with the
classification defined earlier. In the fstree representing
the first snapshot, all files have the New state. Then,
during mutation, the file states change with precalcu-
lated probabilities that have been extracted by looking
at a window of three real snapshots, covering two file
transitions: between the first and second snapshots and
between the second and third ones. This is the minimum
required to allow us to calculate conditional probabili-
ties for the Markov model. For example, if some file is
modified between snapshots F0 → F1 and is also mod-
ified in F1 → F2, then this is a Modified→Modified
(MM) transition. Counting the number of MM transi-
tions among the total number of state transitions allows
us to compute the corresponding probability; we did this
for each possible transition.

Some transitions, such as Deleted→New (DN), may
seem counterintuitive. However, some files are recreated
after being deleted, producing nonzero probabilities for

Unmodif.
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P(NU)

P(UU)

New

Modif.

Deleted

P(UD)
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P(MD)
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P(ND)

P(N) P(D)

Figure 4: Markov model for handling file states. State tran-
sitions are denoted by the first letters of the source and des-
tination states. For example, NM denotes a New→Modified
transition and P(NM) is the transition’s probability.

this transition. Similarly, if a file is renamed or moved,
it will be counted as two transitions: a removal and a
creation. In this case, we allocate duplicated chunks to
the new file in a later stage.

The Markov model allows us to accurately capture the
rates of file appearance, deletion, and modification in the
trace. Table 2 presents the average transition probabili-
ties observed for our datasets. As mentioned earlier, in
all datasets files often remain Unchanged, and thus the
probabilities of UU transitions are high. The chances
for a changed file to be re-modified are around 50% for
many of our datasets. The probabilities for many other
transitions vary significantly across different datasets.

Multi-dimensional distribution. When we analyzed
real snapshots, we collected three multi-dimensional file
distributions: Mdel(p1, ..., pndel), Mnew(p1, ..., pnnew),
and Mmod(p1, ..., pnmod ) for deleted, new, and modified
files, respectively. The parameters of these distributions
(p1, ..., pn) represent the characteristics of the files that
were deleted, created, or modified. As described in Sec-
tion 5.1, many factors affect deduplication. In this work,
we selected several that we deemed most relevant for a
generic deduplication system. However, the organiza-
tion of our FS-MUTATE module allows the list of emu-
lated characteristics to be easily extended.

All three distributions include these parameters:
depth: directory depth of a file;
ext: file extension;
size: file size (in chunks):
uniq: the number of chunks in a file that are not present

in the previous snapshot (i.e., unique chunks);
dup1: the number of chunks in a file that have only one

duplicate in the entire previous snapshot; and
dup2: the number of chunks in a file that occur exactly

twice in the entire previous snapshot.
We consider only the chunks that occur up to 3 times
in a snapshot because in all our snapshots these chunks
constituted more than 96% of all chunks.

During mutation, we use the distribution of new files:

Mnew(depth, ext, size, uniq, dup1, dup2)
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Dataset N NM NU ND MU MD MM UM UD UU DN D
Kernels 5 32 65 3 49 3 48 17 3 80 1 3
CentOS 13 4 22 74 43 2 55 4 1 95 1 10
Home 4 2 78 20 54 10 36 0.14 0.35 99.51 6 0.50
MacOS 0.1 11 78 11 37.46 0.03 62.51 0.05 0.03 99.92 1 0.03
System Logs 2 9 90 1 44.40 0.18 55.42 0.03 0.01 99.06 4 0.02
Sources 0.2 7 88 5 58.76 0.04 41.20 0.07 0 99.93 0 0.01

Table 2: Probabilities (in percents) of file state transitions for different datasets. N: new file appearance. D: file deletion.
NM: New→Modified transition. NU: New→Unmodified transition. ND: New→Deleted transition, etc.

to create the required number of files with the appro-
priate properties. E.g., if Mnew(2, “.c”, 7, 3, 1, 1) equals
four, then FS-MUTATE creates four files with a “.c” ex-
tension at directory depth two. The size of the created
files is seven chunks, of which three are unique, one
has a single duplicate, and one has two duplicates across
the entire snapshot. The hashes for the remaining two
chunks are selected using a per-snapshot (not per-file)
distribution of duplicates, which is collected during anal-
ysis along with Mnew. Recall that FS-MUTATE does not
generate the content of the chunks, but only their hashes.
Later, during on-disk snapshot creation, FS-CREATE will
generate the content based on the hashes.

When selecting files for deletion, FS-MUTATE uses the
deleted-files distribution:

Mdel(depth, ext, size, uniq, dup1, dup2, state)
This contains an additional parameter—state—that al-
lows us to elegantly incorporate a Markov model in the
distribution. The value of this parameter can be one
of the Markov states New, Modified, Unmodified, or
Deleted; we maintain the state of each file within the
fstree. A file is created in the New state; later, if FS-
MUTATE modifies it, its state is changed to Modified;
otherwise it becomes Unmodified. When FS-MUTATE
selects files for deletion, it limits its search to files in the
state given by the corresponding Mdel entry. For exam-
ple, if Mdel(2, “.c”, 7, 3, 1, 1, “Modified”) equals one,
then FS-MUTATE tries to delete a single file in the Mod-
ified state (all other parameters should match as well).

To select files for modification, FS-MUTATE uses the
Mmod distribution, which has the same parameters as
Mdel. But unlike deleted files, FS-MUTATE needs to de-
cide how to change the files. For every entry in Mmod, we
keep a list of change descriptors, each of which contains
the file’s characteristics after modification:

1. File size (in chunks);
2. The number of unique chunks (here and in the two

items below, duplicates are counted against the en-
tire snapshot);

3. The number of chunks with one duplicate;
4. The number of chunks with two duplicates; and
5. Change pattern.
All parameters except the last are self-explanatory.

The change pattern encodes the way a file was modified.
We currently support the following three options: B—

Dataset B E M BE BM ME BEM
Kernels 52 8 7 14 5 3 11
CentOS 69 3 2 8 2 1 15
Home 38 3 8 10 11 1 29
MacOS 53 21 1 12 1 1 11
Sys. Logs 42 34 5 6 0 1 10
Sources 20 6 41 7 7 1 18

Table 3: Probabilities of the change patterns for different
datasets (in percents).

the file was modified in the beginning (this usually corre-
sponds to prepend); E—the file was modified at the end
(corresponds to file extension or truncation); and M—
the file was modified somewhere in the middle, which
corresponds to the case when neither the first nor the last
chunk were modified, but others have changed. We also
support combinations of these patterns: BE, BM, EM,
and BEM. To recognize the change pattern during anal-
ysis, we sample the corresponding chunks in the old and
new files. Table 3 presents the average change patterns
for different datasets. For all datasets the number of files
modified in the beginning is high. This is a consequence
of chunk-based analysis: files that are smaller than the
chunk size contain a single chunk. Therefore, wherever
small files are modified, the first (and only) chunk differs
in two subsequent versions, which our analysis identi-
fies as a change in the file’s beginning. For the System
Logs dataset, the number of files modified at the end is
high because logs are usually appended. In the Sources
dataset many files are modified in the middle, which cor-
responds to small patches in the code.

We collect change descriptors and the Mmod distribu-
tion during the analysis phase. During mutation, when a
file is selected for modification using Mmod, one of the
aforementioned change descriptors is selected randomly
and the appropriate changes are applied.

It is possible that the number of files that satisfy the
distribution parameters is larger than the number that
need to be deleted or modified. In this case, FS-MUTATE
randomly selects files to operate on. If not enough files
with the required properties are in the fstree, then FS-
MUTATE tries to find the best match based on a simple

...fstreefstree fstree
mutate mutate

create

create
create

Dataset

Figure 5: The process of dataset formation.

7



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1  5  10  15  20  25  30  35  40

F
ile

s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(a) Total number of files

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1  5  10  15  20  25  30  35  40

C
h
u
n
k
s
 (

in
 1

0
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(b) Total number of chunks

 0

 50

 100

 150

 200

 250

1  5  10  15  20  25  30  35  40

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(c) Number of unique chunks

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1  5  10  15  20  25  30  35  40

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(d) Number of chunks with 1 duplicate

 0

 10

 20

 30

 40

 50

 60

1  5  10  15  20  25  30  35  40

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(e) Number of chunks with 2 duplicates
Figure 6: Emulated parameters for Kernels real and synthe-
sized datasets as the number of snapshots in them increases.

heuristic: the file that matches most of the properties.
Other definitions of best match are possible, and we plan
to experiment with this parameter in the future.

Multi-dimensional distributions capture not only the
statistical frequency of various parameters, but also their
interdependencies. By adding more distribution dimen-
sions, one can easily emulate other parameters.

Analysis. To create profiles for our datasets, we first
scanned them using the FS-SCAN module mentioned
previously. We use variable chunking with an 8KB
average size; variable chunking is needed to properly
detect the type of file change, since prepended data
causes fixed-chunking systems to see a change in every
chunk. We chose 8KB as a compromise between accu-
racy (smaller sizes are more accurate) and the speed of
the analysis, mutation, and file system creation steps.

The information collected by FS-SCAN was loaded
into a database; we then used SQL queries to extract dis-
tributions. The analysis of our smallest dataset (Kernels)
took less than 2 hours, whereas the largest dataset (Ma-
cOS) took about 45 hours of wall-clock time on a single
workstation. This analysis can be sped up by paralleliz-
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Figure 7: Emulated parameters for CentOS real and synthe-
sized datasets as the number of snapshots in them increases.

ing it. However, since it needs to be done only once
to extract a profile, a moderately lengthy computation
is acceptable. Mutation and generation of a file system
run much faster and are evaluated in Section 6. The size
of the resulting profiles varied from 8KB to 300KB de-
pending on the number of changes in the dataset.

Chunk generation. Our FS-CREATE implementation
generates chunk content by maintaining a randomly gen-
erated buffer. Before writing a chunk to the disk, this
buffer is XORed with the chunk ID to ensure that each
ID produces a unique chunk and that duplicates have
the same content. We currently do not preserve the
chunk’s entropy because our scan tool does not yet col-
lect this data. FS-SCAN collects the size of every chunk,
which is kept in the in-memory fstree object for use by
FS-CREATE. New chunks in mutated snapshots have
their size set by FS-MUTATE according to a per-snapshot
chunk-size distribution. However, deduplication sys-
tems can use any chunk size that is larger than or equal to
the one that FS-SCAN uses. In fact, sequences of identi-
cal chunks may appear in several subsequent snapshots.
As these sequences of chunks are relatively long, any
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Figure 8: Emulated parameters for Homes real and synthe-
sized datasets as the number of snapshots in them increases.

chunking algorithm can detect an appropriate number of
identical chunks across several snapshots.

Security guarantees. The FS-SCAN tool uses 48-bit
fingerprints, which are prefixes of 16 byte MD5 hashes;
this provides a good level of security, although we may
be open to dictionary attacks. Stronger anonymization
forms can be easily added in the future work.

6 Evaluation
We collected profiles for the datasets described in Sec-
tion 4 and generated the same number of synthetic snap-
shots as the real datasets had, chaining different invoca-
tions of FS-MUTATE so that the output of one mutation
served as input to the next. All synthesized snapshots
together form a synthetic dataset that corresponds to the
whole real dataset (Figure 5). We generated the initial
fstree object by running FS-SCAN on the real file system.
Each time a new snapshot was added, we measured the
total files, total chunks, numbers of unique chunks and
those that had one and two duplicates, directory depth,
file size and file type distributions.

First, we evaluated the parameters that FS-MUTATE
emulates. Figures 6–11 contain the graphs for the real
and synthesized Kernels, CentOS, Homes, MacOS, Sys-
tem Logs, and Sources datasets, in order. The Y axis
scale is linear for the Kernels and Sources datasets (Fig-
ures 6–7) and logarithmic for the others (Figures 8–
11). We present file and chunk count graphs only for
the Kernels and CentOS datasets. The relative error of
these two parameters is less than 1% for all datasets,
and the graphs look very similar: monotonic close-to-
linear growth. The file count is insensitive to modifica-
tion operations because files are not created or removed,
which explains its high accuracy. The total chunk count
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Figure 9: Emulated parameters for MacOS real and synthe-
sized datasets as the number of snapshots in them increases.
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Figure 10: Emulated parameters for System Logs real and syn-
thesized datasets as the number of snapshots in them increases.

is maintained because we carefully preserve file size dur-
ing creation, modification, and deletion.

For all datasets the trends observed in the real data
are closely followed by the synthesized data. However,
certain discrepancies exist. Some of the steps in our FS-
MUTATE module are random; e.g., the files deleted or
modified are not precisely the same ones as in the real
snapshot, but instead ones with similar properties. This
means that our synthetic snapshots might not have the
same files that would exist in the real snapshot. As a
result, FS-MUTATE cannot find some files during the fol-
lowing mutations and so the best-match strategy is used,
contributing to the instantaneous error of our method.
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Figure 11: Emulated parameters for Sources real and synthe-
sized datasets as the number of snapshots in them increases.

However, because our random actions are controlled by
the real statistics, the deviation is limited in the long run.

The graphs for unique chunks have an initial peak be-
cause there is only one snapshot at first, and there are not
many duplicates in a single snapshot. As expected, this
peak moves to the right in the graphs for chunks with
one and two duplicates.

The Homes dataset has a second peak in all graphs
around 10–12 snapshots (Figure 8). This point corre-
sponds to two missing weekly snapshots. The first was
missed due to a power outage; the second was missed be-
cause our scan did not recover properly from the power
outage. As a result, the 10th snapshot contributes many
more unique chunks in the dataset than the others.

The MacOS dataset contains daily, not weekly snap-
shots. Daily changes in the system are more sporadic
than weekly ones: one day users and applications add
a lot of new data, the next many files are copied, etc.
Figure 9 therefore contains many small variations.

Table 4 shows the relative error for emulated param-
eters at the end of each run. Maximum deviation did
not exceed 15% and averaged 6% for all parameters and
datasets. We also analyzed the file size, type, and di-
rectory depth distributions in the final dataset. Figure 12
demonstrates these for several representative datasets. In
all cases the accuracy was fairly high, within 2%.

The snapshots in our datasets change a lot. For exam-
ple, the deduplication ratio is less than 5 in our Kernels
dataset, even though the number of snapshots is 40. We
expect the accuracy of our system to be higher for the
datasets that change slower; for instance, datasets with
identical snapshots are emulated without any error.

Performance. We measured the time of every muta-
tion and creation operation in the experiments above.
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Figure 12: File size, type, and directory depth distributions for
different real and synthesized dataset.

Dataset Files Chunks Unique 1 Dup. 2 Dup.
chunks chunks chunks

Kernels < 1 < 1 4 9 5
CentOS 6 2 9 7 11
Home < 1 < 1 12 13 14
MacOS < 1 < 1 4 9 4
Sys. Logs < 1 < 1 6 15 15
Sources < 1 < 1 10 8 13

Table 4: Relative error of emulated parameters after the final
run for different datasets (in percents).

Dataset Total Snap- Mutat. Creat. Total
size (GB) shots time time time

Kernels 13 40 30 sec 6 sec 5 min
CentOS 36 8 3 min 95 sec 13 min
Home 3,482 15 44 min 38 min 10 hr
MacOS 4,080 71 49 min 10 min 13 hr
Sys. Logs 626 8 14 min 4 hr 32 hr
Sources 1,331 8 21 min 4 hr 32 hr

Table 5: Times to mutate and generate data sets.

The Kernels, CentOS, Home, and MacOS experiments
were conducted on a machine with an Intel Xeon X5680
3.3GHz CPU and 64GB of RAM. The snapshots were
written to a single Seagate Savvio 15K RPM disk drive.
For some datasets the disk drive could not hold all
the snapshots, so we removed them after running FS-
SCAN for accuracy analysis. Due to privacy constraints
the System Logs and Sources experiments were run
on a different machine with an AMD Opteron 2216
2.4GHz CPU, 32GB of RAM, and a Seagate Barracuda
7,200 RPM disk drive. Unfortunately, we had to share
the second machine with a long-running job that period-
ically performed random disk reads.

Table 5 shows the total mutation time for all snap-
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shots, the time to write a single snapshot to the disk,
and the total time to perform all mutations plus write the
whole dataset to the disk. The creation time includes
the time to write to disk. For convenience the table also
contains dataset sizes and snapshot counts.

Even for the largest dataset, we completed all muta-
tions within one hour; dataset size is the major factor in
mutation time. Creation time is mostly limited by the
underlying system’s performance: the creation through-
put of the Home and MacOS datasets is almost twice that
of Kernels and CentOS, because the average file size is
2–10× larger for the former datasets, exploiting the high
sequential drive throughput. The creation time was sig-
nificantly increased on the second system because of a
slower disk drive (7,200RPM vs. 15KRPM) and the in-
terfering job, contributing to the 32-hour run time.

For the datasets that can fit in RAM—CentOS and
Kernels—we performed an additional FS-CREATE run
so that it creates data on tmpfs. The throughput in both
cases approached 1GB/sec, indicating that our chunk
generation algorithm does not incur much overhead.

7 Related Work
A number of studies have characterized file system
workloads using I/O traces [13, 19, for example] that
contain information about all I/O requests observed dur-
ing a certain period. The duration of a full trace is usu-
ally limited to several days, which makes it hard to ana-
lyze long-term file system changes. Trace-based studies
typically focus on the dynamic properties of the work-
load, such as I/O size, read-to-write ratio, etc., rather
than file content as is needed for deduplication studies.

Many papers have used snapshots to characterize var-
ious file system properties [2, 3, 20, 22]. With the ex-
ception of Agrawal et al.’s study [2], discussed below,
the papers examine only a single snapshot, so only static
properties can be extracted and analyzed. Because con-
ventional file systems are sensitive to meta-data char-
acteristics, snapshot-based studies focus on size distri-
butions, directory depths or widths, and file types (de-
rived from extensions). File and block lifetimes are ana-
lyzed based on timestamps [2, 3, 22]. Authors often dis-
cuss the correlation between file properties, e.g., size and
type [3,20]. Several studies have proposed high-level ex-
planations for file size distributions and designed models
for synthesizing specific distributions [7, 20].

Less attention has been given to the analysis of long-
term file system changes. Agrawal et al. examined the
trends in file system characteristics from 2000–2004 [2].
The authors presented only meta-data evolution: file
count, size, type, age, and directory width and depth.

Some researchers have worked on artificial file sys-
tem aging [1, 21] to emulate the fragmentation encoun-
tered in real long-lived file systems. Our mutation mod-

ule modifies the file system in RAM and thus does not
emulate file system fragmentation. Modeling fragmen-
tation can be added in the future if it proves to impact
deduplication systems’ performance significantly.

A number of newer studies characterized deduplica-
tion ratios for various datasets. Meyer and Bolosky stud-
ied content and meta-data in primary storage [15]. The
authors collected file system content from over 800 com-
puters and analyzed the deduplication ratios of differ-
ent algorithms: whole-file, fixed chunking, and variable
chunking. Several researchers characterized deduplica-
tion in backup storage [17, 23] and for virtual machine
disk images [11, 14]. Chamness presented a model for
storage-capacity planning that accounts for the number
of duplicates in backups [4]. None of these projects at-
tempted to synthesize datasets with realistic properties.

File system benchmarks usually create a test file sys-
tem from scratch. For example, in Filebench [8] one
can specify file size and directory depth distributions
for the creation phase, but the data written is either all
zeros or random. Agrawal et al. presented a more de-
tailed attempt to approximate the distributions encoun-
tered in real-world file systems [1]. Again, no attention
was given in their study to generating duplicated content.

8 Conclusions and Future Work

Researchers and companies evaluate deduplication with
a variety of datasets that in most cases are private, unrep-
resentative, or small in size. As a result, the community
lacks the resources needed for fair and versatile compar-
ison. Our work has two key contributions.

First, we designed and implemented a generic frame-
work that can emulate the formation of datasets in differ-
ent scenarios. By implementing new mutation modules,
organizations can expose the behavior of their internal
datasets without releasing the actual data. Other groups
can then regenerate comparable data and evaluate differ-
ent deduplication solutions. Our framework is also suit-
able for controllable micro-benchmarking of deduplica-
tion solutions. It can generate arbitrarily large datasets
while still preserving the original’s relevant properties.

Second, we presented a specific implementation of
the mutation module that emulates the behavior of sev-
eral real-world datasets. To capture the meta-data and
content characteristics of the datasets, we used a hy-
brid Markov and Distribution model that has a low er-
ror rate—less than 15% during 8 to 71 mutations for all
datasets. We plan to release the tools and profiles de-
scribed in this paper so that organizations can perform
comparable studies of deduplication systems. These
powerful tools will help both industry and research to
make intelligent decisions when selecting the right dedu-
plication solutions for their specific environments.
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Future Work. Our specific implementation of the
framework modules might not model all parameters that
potentially impact the behavior of existing deduplication
systems. We plan to conduct a study similar to Park et
al. [18] to create a complete list of the dataset proper-
ties that impact deduplication systems. Although we can
generate an initial file system snapshot using a specially
collected profile for FS-MUTATE, such approach can be
limiting. We plan to perform an extensive study on how
to create initial fstree objects. Many deduplication sys-
tems perform local chunk compression to achieve even
higher aggregate compression. We plan to incorporate
into our framework a method for generating chunks with
a realistic compression ratio distribution. Finally, we
want to apply clustering techniques to detect trend lines
so that more generic profiles can be designed.
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