
Cosy: Develop in User-Land, Run in Kernel-Mode

Amit Purohit, Charles P. Wright, Joseph Spadavecchia, and Erez Zadok
Stony Brook University

Appears in the 9th Workshop on Hot Topics in Operating Systems (HOTOS 2003)

Abstract

User applications that move a lot of data across the
user-kernel boundary suffer from a serious performance
penalty. We provide a framework, Compound System
Calls (Cosy), to enhance the performance of such user-
level applications. Cosy provides a user-friendly mech-
anism to execute the data-intensive code segment of the
application in the kernel. This is achieved by aggregat-
ing the data-intensive system calls and the intermediate
code into a compound. This compound is executed in
the kernel, avoiding redundant data copies.

A Cosy version of GCC makes the formation of a
Cosy compound simple. Cosy-GCC automatically con-
verts user-defined code segments into compounds. To
ensure the security of the kernel, we use a combination
of static and dynamic checks. We limit the execution
time of the application in the kernel by using a modi-
fied preemptible kernel. Kernel data integrity is assured
by performing necessary dynamic checks. Static checks
are enforced by Cosy-GCC. To study the performance
benefits of our Cosy prototype, we instrumented appli-
cations such as grep and ls. These application showed
an improvement of 20–80%. Our current work focuses
on faster and secure execution of entire programs in the
kernel without source code modification.

1 Introduction
User applications like HTTP, FTP, and mail servers in-
volve copying a significant amount of data across the
user-kernel boundary. It is well understood that this
cross-boundary data movement is expensive. It can re-
duce the overall performance of the application by two
orders of magnitude [11]. For applications like ls that
invoke a large number of small system calls, perfor-
mance is hampered by the time wasted in context switch-
ing.

A solution to improve performance of such applica-
tions is to move the bottleneck code segment, the seg-
ment involving cross-boundary data movement, into the
kernel [1, 5]. Applications written for VINO [5] and
SPIN [1] have supported this idea. Exokernels [3] take
a different approach by allowing user processes to de-
scribe the on-disk data structures and methods to imple-
ment them. The common problem with these approaches
is that they do not fit in the framework of current com-
modity operating systems. Others attempted to improve
the performance but at the cost of safety [8]. Software

fault isolation provides a secure mechanism to execute
untrusted code, but performance benefits are often lost
[9]. Other solutions to improve performance include
sendfile, NFSv4 [6], and smart storage [7]. Sendfile
provides a way to avoid data copies for network-specific
applications. NFSv3 adds some new calls like READ-
DIRPLUS to reduce the overhead due to a readdir fol-
lowed by several stat calls. Smart storage is limited
to improving disk I/O and can not be extended to net-
works. These approaches are successful but they are not
extensible.

We present Cosy as a generic solution to safely ex-
ecute bottleneck code segments of user applications in
the kernel. Cosy exploits zero-copy techniques and code
aggregation to achieve better performance without re-
ducing the security. Cosy extracts the system calls and
the intermediate code from the bottleneck code segment
and encodes them to create a compound. A compound
is formed by aggregation of system calls, programmatic
constructs (e.g., if-else and while), and user speci-
fied functions. This compound is then passed to the ker-
nel via a new system call (cosy run) which decodes
it and executes the decoded elements in the compound
intelligently to avoid redundant data copies.

To facilitate automatic generation of compounds we
provide Cosy-GCC, a modified version of GCC, which
makes writing Cosy compounds simple. The user just
needs to mark the bottleneck region and Cosy-GCC con-
verts it into a compound at compile time. Cosy-GCC
also finds data dependencies among Cosy statements and
encodes this information into the compound. This infor-
mation is used by the kernel while executing the com-
pound to avoid data copies.

Systems that allow arbitrary user code to execute in
kernel mode must address security and protection is-
sues: how to avoid buggy or malicious code from cor-
rupting data, accessing protected data, or crashing the
kernel. Securing such code often requires costly runtime
checking [8]. Cosy uses a combination of static and dy-
namic approaches to assure safety in the kernel. Cosy
explores various hardware features along with software
techniques to achieve maximum safety without adding
much overhead.

The rest of this paper is organized as follows. Section
2 describes the design of our system. Section 3 presents
an evaluation of our Cosy prototype. We conclude in
Section 4.

1

2 Design
The main motivation behind Cosy is to achieve maxi-
mum performance with minimal user intervention, and
without compromising security. The primary design
goals were as follows:

Performance We exploit several zero-copy techniques
at various stages to enhance the performance. We
make use of shared buffers between user and kernel
space for fast cross-boundary data exchange.

Safety We make use of various security features includ-
ing kernel preemption and x86 segmentation to as-
sure a robust safety mechanism. We make use of a
combination of static and dynamic checks to assure
safety in the kernel without adding run-time over-
heads.

Simplicity We have automated the formation and exe-
cution of the compound so that it is almost transpar-
ent to the end user. Thus it is simple to write new
code as well as modify existing code to use Cosy.
The Cosy framework is extensible and adding new
features to it is not difficult.

2.1 Architecture
Cosy executes compounds of system calls in the ker-
nel. Often only small sections of code suffer from
cross-boundary communication. The first step while us-
ing Cosy is to identify these bottleneck code segments.
A bottleneck code segment is transformed into a com-
pound by identifying and aggregating the system calls,
arithmetic, assignment operations, loops, and function
calls. To facilitate the formation and execution of a com-
pound, Cosy provides three components: the Cosy ker-
nel extension, Cosy-GCC, and Cosy-Lib. These compo-
nents communicate using two shared buffers. The com-
pound buffer is a shared buffer used to encode the com-
pound. The fast buffer is another buffer used to facilitate
zero-copy within system calls that share arguments. We
look at the individual components and the internals of
the compound buffer in the following subsections.

2.1.1 Kernel Extension for Cosy
The Cosy kernel extension exposes three system calls to
the user space components.

• cosy init allocates the two shared buffers that are
used by the user and kernel to exchange the en-
coded compound and the results.

• cosy run decodes the compound from the com-
pound buffer and executes the decoded instructions
one by one.

• cosy uninit frees any Cosy resources for the cur-
rent process including the shared buffers.

Each Cosy-enabled process has its own shared
buffers.

2.1.2 Cosy-GCC
Currently, the application programmer just needs to
identify the bottleneck code segment in the application

and mark it in the standard C program using the mark-
ers provided by Cosy (COSY START and COSY END).
Usually, no modifications are needed to the code within
these markers. The only constraint is that all the instruc-
tions within the marked block should be supported under
Cosy-GCC. Cosy-GCC parses the code and if all the in-
structions within the segment are supported then it mod-
ifies the marked code. It also inserts a cosy run at the
end of the marked segment. The code is modified in such
a way that during execution, the modified code forms
a compound and the cosy run at the end informs the
Cosy kernel extension to execute this recently-formed
compound. Cosy-GCC also maintains a symbol table of
labels for Cosy calls. This symbol table is used to find
out any interdependency among the arguments of com-
pounded calls. The information about interdependencies
is also encoded in the compound buffer. The Cosy ker-
nel extension uses this information to avoid data copies.
The symbol table is also used to resolve the jump labels.

Cosy supports loops (e.g., for, do-while, and
while), conditional statements (e.g., if, switch, and
goto), simple arithmetic operations (e.g., increment,
decrement, assignment, add, and subtract) and system
calls within a marked code segment. Cosy also provides
an interface to execute a piece of user code in the ker-
nel. Applications like grep, volume rendering [10], and
checksumming are the main motivation behind adding
this support. These applications read large amounts of
data in chunks and then perform a unique operation on
every chunk. To benefit such applications, Cosy pro-
vides a secure mechanism to call a user supplied func-
tion from within the kernel.

In order to assure the secure execution of the code in
the kernel, we restrict Cosy-GCC to support a subset of
the C-language. Cosy-GCC ensures there are no unsup-
ported instructions within the marked block, so complex
code may need some small modifications to fit within
the Cosy framework. This subset is carefully chosen to
support different types of code in the marked block, thus
making Cosy useful for a wide range of applications.

2.1.3 Cosy-Lib
Cosy-Lib provides a set of utility functions to insert en-
tries into a compound. Cosy-GCC, while compiling
a marked segment, inserts calls to these utility func-
tions. So generally the functioning of Cosy-Lib is en-
tirely transparent to the user as it is done by Cosy-GCC.
But it is also possible for programmers to manually cre-
ate a compound using these utility functions. It is pos-
sible to design complex or hand-optimized compounds
using this facility.

2.1.4 Compound Buffer
In this section we discuss the internal representation of
Cosy compound (see Figure 1). A compound is a set of
entries belonging to one of the following types:

• System calls
• Arithmetic operations
• Variable assignments

2

• while, do-while, and for loops
• User provided functions
• Conditional statements
• switch statements
• Labels
• gotos (unconditional branches)

Compound
End Of

Length
Block

Type

Sh
ar

ed
 D

at
a

B
uf

fe
r

T
Y

P
E

T
Y

P
E

T
Y

P
E

T
Y

P
E

Argument 2

number
call
Sys

No of Entries
Max Num of

Math
Operation

(Inc)

Condition
Statment

(If)

System
Call

Header
Global

Value
Return

Fl
ag

s
Entries to Execute

Return
ValueFl

ag
s

Argument 1
Jump

TargetFl
ag

s

Length

< > = !=
Condition OP

Arguments ...

Return Value

Call

Function
Arguments ...

Function
Pointer

Figure 1: An Example of the Structure of a Cosy Compound

The first component of the compound buffer is the
global header. It contains the number of entries in the
compound, the length of the compound in words, and the
maximum number of entries to execute. This entry en-
sures protection against unending compounds. The rest
of the compound contains a set of entries with a local
header followed by a number of arguments.

Each type of entry has a different structure for the lo-
cal headers. Each local header has a type field, which
uniquely identifies the entry type. Depending on the type
of the entry, the rest of the arguments are analyzed. For
example, if the entry is of the type “system call” then the
local header contains the system call number and flags.
The flags indicate whether the argument is the actual
value or it is a reference to the output of another entry.
The latter occurs when there are argument dependencies.
If it is a reference, then the actual value is retrieved from
the reference address. The local header is followed by a
number of arguments necessary to execute the entry. If
the execution of the entry returns any value (as in sys-
tem calls, math operations, and function calls) then one
position is reserved to store the result of the execution.
Conditional statements affect the flow of the execution.
The header of a conditional statement specifies the oper-
ator and the next instruction executed, if the condition is
satisfied. Cosy-GCC resolves dependencies among the
arguments and the return values, the correspondence be-
tween the label and the compound entry, and forward
references for jump labels.

The overall performance of the framework depends
on the efficiency of the decoder. Hence we have used
several techniques like lazy caching and fast system call
invocation to optimize the decoder. The first time any

entry is decoded, we store the decoded value in a hash
table. This makes it possible to decode an entry only
once; subsequent accesses use the hashed entry. Another
optimization is achieved by pushing the arguments of the
system call directly onto the stack since they are packed
in the Compound in the same order as they should appear
on the Kernel’s Stack. This makes system call invocation
faster. A small piece of assembly code helps to achieve
this faster invocation of system calls.

2.2 Shared Data Buffer
In this section we explain various ways that Cosy ex-
ploits zero-copy techniques by the aggregation of data-
intensive code. Much work has already been done on
zero-copy techniques. Cosy uses similar techniques but
it tries to combine multiple techniques and provide a uni-
form interface to the user. Depending on the type of ap-
plication, different zero-copy techniques are employed.

Cosy modifies the behavior of copy from user
(copies data from the user address space into the ker-
nel address space) and copy to user (the converse of
copy to user) to enable zero-copy when the user is
not interested in getting the data back into the user space.
For example, when there is data dependency between a
read and a following write call, Cosy uses the fast buffer
to avoid the redundant copy.

Cosy also supports special versions of system calls
that are commonly used. The extensive use of these
system calls justifies the creation of zero-copy equiv-
alents. We currently support zero-copy versions of
cosy read, cosy write, and cosy stat. Cosy-
GCC uses these system calls automatically.

2.3 Safe Execution of a Compound
Cosy makes use of a combination of static and dynamic
checks to ensure safe execution of compound. Cosy is
not vulnerable to bad arguments when executing the sys-
tem calls on behalf of a user process. The system call in-
vocation by the Cosy kernel module is the same as a nor-
mal process and hence all the necessary checks are ob-
served. However, when executing a user-supplied func-
tion, more safety precautions are needed. We describe
two interesting Cosy safety features in the next sections:
a preemptive kernel to avoid infinite loops, and x86 seg-
mentation to protect kernel memory.

2.3.1 Kernel Preemption
One of the critical problems that needs to be handled
while executing a user function in the kernel is to limit
its execution time. To handle such situations, Cosy
uses a preemptible kernel. A preemptible kernel allows
scheduling of processes even when they are running in
the context of the kernel. So even if a Cosy process
causes an infinite loop, it is eventually scheduled out just
like a normal user process. Every time a Cosy process
is scheduled out, Cosy interrupts and checks the running
time of the process inside the kernel. If this time has ex-
ceeded the maximum allowed kernel time, then the pro-
cess is terminated. We modified the scheduler behavior

3

to add this check for Cosy processes. The added code
is minimal and is executed only for Cosy processes and
hence does not affect the overall system performance.
The limit on the amount of kernel time is kept suffi-
ciently high. This high limit is not a security concern.
The process even if running in kernel mode could be
scheduled out and hence it does not starve other pro-
cesses.

2.3.2 x86 Segmentation
To assure the secure execution of user-supplied func-
tions in the kernel, we use the Intel x86 segmentation
feature. We support two approaches.

The first approach is to put the entire user function in
an isolated segment but at the same privilege level. The
static and dynamic needs of such a function are satisfied
using memory belonging to the same isolated segment.
This approach assures maximum security, as any refer-
ence outside the isolated segment generates a protection
fault. Also, if we use two non-overlapping segments for
function code and function data, concerns due to self-
modifying code vanish automatically. However, to in-
voke a function in a different segment involves overhead.
Before making the function call, the Cosy kernel exten-
sion saves the current state so it is able to resume execu-
tion later. Saving the current state and restoring it back
is achieved by using the standard task-switching macros,
SAVE ALL and RESTORE ALL, with some modifica-
tions. These macros involve around 12 assembly pushl
and popl instructions, each. So if the function is small
and it is executed a large number of times, this approach
could be costly due to the added overhead of these two
macros. The important assumption here is that even if
the code is executing in a different segment, it still ex-
ecutes at the same privilege level as the kernel. Hence,
it is possible to access resources exposed to this isolated
segment, without any extra overhead. Currently, we al-
low the isolated code to read only the shared buffer, so
that the isolated code can work on this data without any
explicit data copies.

The second approach uses a combination of static and
dynamic methods to assure security. In this approach we
restrict our checks to only those that protect against ma-
licious memory references. This is achieved by isolating
the function data from the function code by placing the
function data in its own segment, while leaving the func-
tion code in the same segment as the kernel. In Linux,
all the data references are resolved using the ds segment
register, unless a different segment register is explicitly
specified. In this approach, all accesses to function data
are forced to use a different segment register than ds
(gs or fs). The segment register (gs or fs) points to
the isolated data segment, thus allowing access only to
that segment; the remaining portion of the memory is
protected from malicious access. This is enforced by
having Cosy-GCC append a %gs (or %fs) prefix to all
memory references within the function. This approach
involves no additional runtime overhead while calling
such a function, making it very efficient. However, this
approach has two limitations. It provides little protection

against self modifying code, and it is also vulnerable to
hand-crafted user functions that are not compiled using
Cosy-GCC. We are exploring compiler techniques such
as self certifying code [5] to address the above concerns.

2.4 Cosy Example
In this section we illustrate some simple examples of
code using Cosy. We write them once using Cosy-GCC
and then without using Cosy-GCC. To improve clarity
and conserve space we do not include any error check-
ing. In these examples, we assume that the system calls
without any error checking always succeed.

The following code is a simple file copy program. It
reads from input file ifile and copies the data read to
generate a duplicate file ofile:
1 cosy_init();
2
3 COSY_START();
4 ifd = open(ifile, O_RDONLY);
5 ofd = open(ofile, O_WRONLY);
6
7 do {
8 rlen = read(ifd, buf, 4096);
9 wlen = write(ofd, buf, rlen);
10 } while(wlen == 4096);
11 COSY_END();
12 cosy_uninit();

In the above program we can see that the code is al-
most unchanged except four new instructions. When the
above code is compiled using Cosy-GCC it takes the fol-
lowing form:
1 cosy_init();
2
3 cosy_start();
4 cosy_open(&ifd, ifile, O_RDONLY);
5 cosy_open(&ofd, ofile, O_WRONLY);
6
7 cosy_do();
8 cosy_read(&rlen, ifd, buf, 4096);
9 cosy_write(&wlen, ofd, buf, 4096);
10
11 cosy_while(wlen, "==", 4096);
12 cosy_run();
13 cosy_uninit();

Line 1 allocates the shared buffers for the process.
Line 3 clears the compound buffer. Lines 4–11 add en-
tries into the compound. It includes a while loop around
read and write. Line 12 instructs the Cosy kernel
module to execute this compound. Finally, line 13 re-
leases any buffers that are owned by this process.

3 Current Status
In this section we present benchmarks of our prototype
that show the effectiveness of Cosy in improving perfor-
mance of various applications. We used the following
three configurations to compare the results:

1. VAN: This is a generic setup. This configuration
does not use Cosy.

2. COSY: This is the Cosy configuration. It uses the
Cosy framework to form and execute a compound,
but does not use zero-copy techniques.

4

3. COSY-FAST: This configuration makes use of com-
pounds and the zero-copy system calls provided by
Cosy.

We performed our tests on a Intel Pentium-IV 1.7GHz
machine with 64MB of RAM and a 7200 RPM 20GB
ATA/100 hard drive. We repeated each test 20 times
and the observed standard deviations were less that 5%.
To evaluate the performance of Cosy, we report results
of three benchmarks: a database simulation, ls, and
grep.

Database Simulation In this benchmark we evaluate
the benefits of Cosy for a database-like application. We
wrote a program that seeks to random locations in a file
and then reads and writes to it. The total number of reads
and writes is six million. The ratio of reads to writes we
chose is 2:1, matching pgmeter’s [2] database workload.

We used all three configurations VAN, COSY, and
COSY FAST. We ran the benchmark for increasing file
sizes. We also ran this benchmark with multiple pro-
cesses to determine the scalability of Cosy in a multi-
process environment. In call test, we kept the number of
transactions constant at six million.

Both versions of Cosy perform better than VAN.
COSY FAST shows a 64% improvement, while COSY
shows a 26% improvement in the elapsed time as seen in
Figure 2. COSY FAST is better than COSY by 38%. This
additional benefit is the result of the zero-copy savings.
The improvements achieved are stable even when the
working data set size exceeds system memory bounds,
since the I/O is interspersed with function calls.

We also tested the scalability of Cosy, when multiple
processes are modifying a file concurrently. We repeated
the database test for 2 and 4 processes. We kept the total
number of transactions performed by all processes to-
gether fixed at six million. We compared these results
with the results observed for a single process. We found
the results were indistinguishable and they showed the
same performance benefits of 60–70%. This demon-
strates that Cosy is beneficial in a multi-threaded envi-
ronment as well.

ls We instrumented a Cosy ls -l program and com-
pared it with the generic ls -l program. We use
three configurations VAN, COSY and COSY-FAST for this
benchmark.

For each configuration we ran this benchmark for
5000 and 50000 files and recorded the elapsed, system,
and user times. We unmounted and remounted the file
system between each test to ensure cold cache.

Figure 3 shows the system, user, and elapsed times
taken by VAN, COSY, and COSY FAST for listing of 5000
and 50000 files. COSY shows an 8% improvement over
VAN. COSY FAST performs 85% better than VAN for
both the cases. The results indicate that Cosy performs
well for small as well as large workloads, demonstrating
its scalability.

grep To find out the effect of Cosy on data-intensive
applications we instrumented grep with Cosy. This
benchmark reads the files in a specified directory and ex-

0

10

20

30

40

50

60

70

80

90

10 100 1000

E
la

ps
ed

 T
im

e
(p

er
ce

nt
ag

e
im

po
ve

m
en

t)

File Size (MB) (log)

VAN
COSY

COSY_FAST

0

10

20

30

40

50

60

70

80

90

10 100 1000

S
ys

te
m

 T
im

e
(p

er
ce

nt
ag

e
im

pr
ov

em
en

t)

File Size (MB) (log)

VAN
COSY

COSY_FAST

Figure 2: Elapsed and system time percentage improvements
for the Cosy database benchmark (over VAN).

������

������

���

���

������
������
������
������
������
���

������
������
������
������
������
���

	�		�	
	�	

�

�

�

���

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

���

������
������
������
������
������
������
������
������
���

������
���
������
���

������

�� ������

��

��

������
������
������
������
������
���

������
������
������
������
������
���

������
���
 � �
 �

!"#$ %&

'�'()�)*
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�+

,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,

-�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�-

.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.
.�..�.

/�//�/
/�/
0�00�0
0�0

0

0.05

0.1

0.15

0.2

0

0.5

1

1.5

T
im

e
(S

ec
)

Elapsed
 User

 System

COSY COSY

T
im

e
(S

ec
)

VAN COSY_FAST VAN COSY_FAST
5000 No. of Files 50000

Figure 3: Elapsed, system, and user times for the Cosy
ls -l benchmark. Note that the left and right sides of the
graph use different scales.

ecutes a user provided function that searches the buffer
for a given string. We recorded results for increasing
sizes of data. We used all the three configurations men-
tioned at the start of this section.

The Cosy version of grep with zero-copy performs
20% better than the normal version (see Figure 4). The
nonzero-copy version also shows improvement of 15%.

5

0

5

10

15

20

25

0 50 100 150 200 250 300

E
la

ps
ed

 T
im

e
(p

er
ce

nt
ag

e
im

po
ve

m
en

t)

Total File Size (MB)

VAN
COSY

COSY_ZERO

Figure 4: Elapsed time % improvement for grep

The 5% difference between the two flavors of Cosy jus-
tify the use of special zero-copy calls to further improve
performance. This improvement substantiates our claim
that moving the user function into the kernel can give us
additional performance benefits.

4 Conclusions
In our work we introduce a safe yet efficient mecha-
nism to execute bottleneck code segments of user appli-
cations, in kernel mode. We provide various zero-copy
techniques that benefit different user level applications.
Thus we show the applicability of Cosy under different
environments. For user convenience we provide an au-
tomated mechanism to form a compound out of user-
marked code. The marked code can contain loops, sys-
tem calls, arithmetic operations and even some simple
functions. Thus a wide range of code can be moved
to the kernel transparently. Cosy supports a subset of a
widely-used language, namely C, making Cosy easy to
work with. We have prototyped Cosy on Linux, which
is a commonly-used operating system. Many widely
used user applications exist for Linux. We show perfor-
mance improvements for these commonly-used applica-
tions without compromising safety.

Our benchmarks prove the usefulness and effective-
ness of compound system calls. We show a speed im-
provement of 20–80% depending on the type of applica-
tion.

4.1 Future Work
The Cosy work is an important step toward the ultimate
goal of being able to execute unmodified Unix/C pro-
grams in kernel mode. The major hurdles in achieving
this goal are safety concerns.

We plan to explore heuristic approaches to authenti-
cate untrusted code. The behavior of untrusted code will
be observed for some specific period and once the un-
trusted code is considered safe, the security checks will
be dynamically turned off. This will allow us to address
the current safety limitations involving self-modifying
and hand-crafted user-supplied functions.

Intel’s next generation processors are designed to sup-
port security technology that will have a protected space
in main memory for a secure execution mode [4]. We
plan to explore such hardware features to achieve secure
execution of code in the kernel with minimal overhead.

To extend the performance gains achieved by Cosy,
we are designing an I/O-aware version of Cosy. We are
exploring various smart-disk technologies [7] and typi-
cal disk access patterns to make Cosy I/O conscious.

References
[1] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer,

D. Becker, M. Fiuczynski, C. Chambers, and S. Eg-
gers. Extensibility, safety, and performance in the SPIN
operating system. In Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP ’95),
pages 267–284, Copper Mountain Resort, CO, Decem-
ber 1995. ACM SIGOPS.

[2] R. Bryant, D. Raddatz, and R. Sunshine. PenguinoMe-
ter: A New File-I/O Benchmark for Linux. In Proceed-
ings of the 5th Annual Linux Showcase & Conference,
pages 5–10, Oakland, CA, November 2001.

[3] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.
Briceño, R. Hunt, and T. Pinckney. Fast and flexi-
ble application-level networking on exokernel systems.
Technical Report CMU-CS-00-117, Carnegie Mellon
University, March 2000.

[4] H. B. Pedersen. Pentium 4 successor expected in
2004. Pcworld, October 2002. www.pcworld.com/news/
article/0,aid,105882,00.asp.

[5] M. Seltzer, Y. Endo, C. Small, and K. Smith. An intro-
duction to the architecture of the VINO kernel. Technical
Report TR-34-94, EECS Department, Harvard Univer-
sity, 1994.

[6] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. NFS Version 4
Protocol. Technical Report RFC 3010, Network Work-
ing Group, December 2000.

[7] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-smart disk systems. In Proceed-
ings of First USENIX conference on File and Storage
Technologies, March 2003.

[8] T. Maeda. Safe Execution of User programs in ker-
nel using Typed Assmebly language. http://web.yl.is.s.
u-tokyo.ac.jp/˜tosh/kml, 2002.

[9] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham.
Efficient Software-Based Fault Isolation. In Proceedings
of the 14th ACM Symposium on Operating System Prin-
ciples (SOSP ’93), pages 203–216, Asheville, NC, De-
cember 1993. ACM SIGOPS.

[10] C. Yang and T. Chiueh. I/O conscious Volume Render-
ing. In IEEE TCVG Symposium on Visualization, May
2001.

[11] E. Zadok, I. Bădulescu, and A. Shender. Extending file
systems using stackable templates. In Proceedings of
the Annual USENIX Technical Conference, pages 57–70,
June 1999.

6

