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Abstract—
We present a model-discovery methodology for

energy-aware computing systems that achieves high
prediction accuracy. Model discovery, or system
identification, is a critical first step in designing
advanced controllers that can dynamically man-
age the energy-performance trade-off in an optimal
manner. Our methodology favors Multiple-Inputs-
Multiple-Outputs (MIMO) models over a collection
of Single-Input-Single-Output (SISO) models, when
the inputs and outputs of the system are coupled in
a nontrivial way. In such cases, MIMO is generally
more accurate than SISO over a wide range of inputs
in predicting system behavior. Our experimental
evaluation, carried out on a representative server
workload, validates our approach. We obtained an
average prediction accuracy of 77% and 76% for
MIMO power and performance, respectively. We
also show that MIMO models are consistently more
accurate than SISO ones.
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I. INTRODUCTION

The carbon footprint of the IT industry, though
only 2% of the world economy, is estimated to
be equal to that of the entire aviation indus-
try [2]. Making matters worse, server and data-
center energy use has been growing rapidly in
recent years [18]. Concerns about energy con-
sumption in the computing arena have led to the
emergence ofenergy-aware computing systems,
where energy, or power, is a first-class citizen in
the design process [8], [16], [17].

The goals of energy-aware system design include
saving energy without sacrificing performance, and
supporting flexible, dynamic trade-offs between
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energy consumption and performance. Accurate
models of energy consumption and performance
are prerequisites for any foundation for the design
of energy-aware systems.

Such models are also prerequisites for the appli-
cation of control theoryto energy-aware systems.
We advocate the use of control theory in this
context, as it has the potential to yield advanced
controllers that dynamically manage the energy-
performance trade-off in an optimal manner.

Sensor

+
−

references control input outputerror
Controller Plant

Figure 1. Plant with feedback controller

Applying control theory to computing systems
is a three-step process [7]: (1) discover an accurate
model of the plant (i.e., the computing system to be
controlled) usingsystem identification; (2) use the
plant model to design and implement a feedback
controller for the plant as shown in Figure 1;
and (3) apply the controller to real systems (i.e.,
backup system, mail system, etc.) and validate the
functionality of the whole system experimentally.

The process of model discovery for energy-
aware systems, in advance of controller design, is
complicated by a number of factors. We recently
concluded an extensive year-long study [12] of
the energy consumption and performance of a
file-compression server, a representative workload
involving both substantial CPU usage and disk I/O.
We analyzed the effects of several input param-
eters, including compression algorithm, compres-
sion level, file type, persistent storage media, CPU



Dynamic Voltage and Frequency Scaling (DVFS)
level, and disk I/O scheduler—all under the Linux
operating system.

Our experimental results identified three factors
that complicate the system’s energy and perfor-
mance profiles: (1)nonlinearity, which makes the
application of traditional control-theoretical tech-
niques challenging; (2)instability, referring to sig-
nificant fluctuations in outputs when inputs are held
relatively constant; and (3)multi-dimensionality,
referring to the vast number of possible inputs,
outputs, and internal system states.

In this paper, we present a model-discovery
methodology that mitigates the complexities we
identified in [12] to achieve accurate plant models
of energy-aware systems. Key to our approach is to
use onlynumericmodel parameters as inputs and
outputs, and treatnon-numericmodel parameters
as part of the workload. Our methodology favors
MIMO models over a collection of SISO models,
when the system’s inputs and outputs are cou-
pled in a nontrivial way. Our experimental evalua-
tion, performed on a representative file-compressor
server, validates our approach and shows that
MIMO models are consistently more accurate than
SISO ones.

II. RELATED WORK

Control theory has been applied to database
systems [4], storage systems [10], [11], Web
servers [3], [15], and data centers [13], [19]–[21] to
provide QoS (e.g., performance and power) guar-
antees. Abdelzaher et al. surveyed the application
of feedback control to software systems [1]. Most
of the models considered in these approaches are
SISO, with only a few using MIMO.

Hellerstein et al. cconstructed a MIMO model
for Apache Web servers, and proved that a single
MIMO model outperformed a collection of SISO
models in terms of prediction and control [3]. The
MIMO advantage was also observed by Wang et
al. in the context of high-density servers [19]. We
obtained similar results for compression systems
attempting to deal with the trade-offs between
power consumption and performance.

III. M ETHODOLOGY

This section describes our methodology for sys-
tem identification. Due to space limits, we do not

discuss controller design and implementation in
this paper.

We discuss several decisions that need to be
made as part of system identification. For each
system identification, we obtain a dataset by vary-
ing the inputs as described below and measuring
the outputs. The first half of each dataset is used
for training (i.e., system identification). We use the
pem command in MATLAB’s System Identifica-
tion Toolbox [14] to identify the system under the
following state-space model:

x(n + 1) = Ax(n) + Bu(n) + Kw(n) (III.1a)

y(n) = Cx(n) + Du(n) + w(n) (III.1b)

where u(n) are the inputs,y(n) are the outputs,
x(n) are the internal states of the plant, andw(n) is
a white Gaussian noise representing uncontrollable
inputs (e.g., execution of default system daemons)
and output measurement errors at timen. Term
x(n + 1) is the next internal state of the plant. All
u(n), y(n), x(n), andx(n) are arrays. MatricesA,
B, C, D, andK denote the significance or weight
that each internal state and element in the input,
output, and Gaussian noise has in determining the
next state and output of the system.

We validate the model using the second half
of the dataset. By computing the coefficient of
determinationR2, we measure how accurately the
model predicts the measured values in the second
half of the dataset.

Sampling time: The sampling time is the
period of time at which sensors measure the current
system status. It is chosen based on the time
scale of the behavior of the system of interest,
in order to obtain an accurate system model. We
experimentally observed that a sampling time of
10 seconds works well for our compression system.

Model order: We use state-space models. For
such models, themodel order is the number of
components (dimensions) of the state space. A
larger order usually results in a model with higher
accuracy but greater complexity; conversely, a
smaller order usually results in a simpler model but
with lower accuracy. Therefore, choosing a suitable
model order is a trade-off between model accuracy
and model complexity. In our experiments, we
choose the model order in a systematic way as
follows: start with a first-order model, repeatedly
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increase the order by one, and terminate when the
improvement in prediction accuracy is less than
10%. This procedure leads to the orders given in
Table I.

Model type:As shown in Figure 2, the system
model has two inputs (CPU frequency and Number
of workers) and two outputs (Power consumption
and Performance). The system can be modeled
using one MIMO model as shown in Figure 2(a), or
two separate SISO models as shown in Figure 2(b).
SISO1 is achieved by fixing the number of worker
threads to 2 (average number of CPU cores), while
SISO2 is achieved by fixing the CPU frequency at
level 4 (the average of the possible DVFS values).
We evaluate all of these models in Section IV.

Input space:To obtain accurate models, the
input sequences used in the experiments must thor-
oughly exercise the system’s possible behaviors in
the input range of interest. A simple approach that
works well in practice is to vary each inputsinu-
soidally, using relatively prime periods for different
inputs [7]. We approximate this approach using
simpler triangular instead of sinusoidal waves. For
our file-compressor system, we vary the CPU fre-
quency across all 8 possible values, with a period of
19 seconds. We vary the number of worker threads
from 1 to 4 (there are 4 cores), with a relatively
prime period of 13 seconds.

Normalization: The model is usually esti-
mated using Recursive Least-Squares (RLS) es-
timation [6]. If the measurements have a large
constant component, RLS tries to accurately pre-
dict this constant component and may thus fail to
capture relatively small output changes due to input
changes [9]. Therefore, both the input and output
values should be normalized to zero-mean before
applying the RLS technique.

IV. EVALUATION

In this section, we introduce our experimental
setup, compare MIMO and SISO prediction ac-
curacies, and provide an in-depth analysis of our
results.

We conducted our experiments on a Dell Pow-
erEdge R710 server with one quad-core 2.395GHz
Intel R© XeonTM Nehalem CPU with dynamic fre-
quency and voltage scaling (DVFS) support: 8
different frequencies with a difference of 1MHZ for
the top 2 frequencies, and a difference of 133MHZ

MIMO
Number of Performance

PowerCPU
Frequency

Workers

Consumption

(a) MIMO model

SISO2Number of Performance

PowerCPU
Frequency

Workers

ConsumptionSISO1

(b) Two separateSISO models
Figure 2. Our MIMO model and two-SISO models

for the remaining 7 frequencies with Turbo Mode
on. The machine has 24GB RAM, out of which we
only used 2GB to force I/O to take place. We use
the SAS disk of the server for the experiments. The
server was running the Linux 2.6.18 kernel with
the acpi_cpufreq module installed to enable
software control of the CPU frequency.

We connected the server to a WattsUP Pro ES
in-line power meter [5], which measures the power
drawn by a device plugged into the meter, with
resolution of 0.1 Watts. We used thewattsup
Linux utility to download the recorded data from
the meter over a USB interface to the test machine.

For our file-compression server, the worker
threads keep compressing files until all files are
compressed. We use a set of 8,000 text files pro-
duced by decompressing all Linux kernel tar-balls
and stripping non-ASCII characters. Each of the
text files is 10MB in size. Compression is per-
formed bygzip at compression level 7, which is
rather CPU-intensive, and hence creates a stronger
relationship between the number of workers and
performance.

We built the MIMO model from a dataset, called
the multi-dimensinal data, obtained by varying both
inputs and recording, for each sampling period, the
average power consumption during the sampling
period and the number of blocks written to disk
during the sampling period. We built the SISO
models from datasets called uni-dimensional data,
obtained similarly except that one input is varied
and the other input is fixed.

In the following discussion, we use accuracy
numbers from the first run as representative num-
bers unless otherwise noted. We show the accuracy
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(a) SISO1 model evaluated with uni-dimensional data
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(b) SISO2 model evaluated with uni-dimensional data
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(c) MIMO model evaluated with multi-dimensional data for
Power
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(d) MIMO model evaluated with multi-dimensional data for
Performance

Figure 3. Evaluation for one run of a MIMO model and two separate SISO models. Ts is the sampling time we use in the
experiments.

of the SISO models evaluated with uni-dimensional
data in Figures 3(a) and 3(b). The two SISO models
have good prediction accuracy (77% and 86%,
respectively). This demonstrates that when CPU
frequency is the only varying input, it is a good
indicator for power consumption; when the number
of workers is the only varying input, it is a good
indicator for performance. We also achieved an
accuracy of 67% for number of workers vs. power,

and an accuracy of 36% for CPU frequency vs.
performance. This indicates that both inputs are
coupled with both outputs in a nontrivial way. The
accuracy of the MIMO model evaluated with multi-
dimensional data appears in Figures 3(c) and 3(d).
The accuracy is 78% and 74% for power and
performance, respectively.

Although the SISO models achieve good accu-
racy when evaluated on uni-dimensional data (i.e.,
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one input is held constant), in real usage of the sys-
tem, we want to control both inputs. How accurate
are SISO controllers in this context? To answer this
question, we evaluate the SISO models with multi-
dimensional data (specifically, with the second half
of the multi-dimensional data). As expected, the
SISO models generally have lower accuracy in this
setting, because they do not take the variation of
the other input into consideration, and both inputs
are coupled with both outputs in the system, to
varying degree. We ran each experiment multiple
times and report averages unless otherwise noted.
The results are summarized in Table I, quantify
this effect and also demonstrate that, in some
cases, the accuracy of the SISO model evaluated
with multi-dimensional data is very sensitive to
the value chosen for the constant input in the uni-
dimensional data used to build the SISO model.
Because real-world datais multi-variate, it suggests
that SISO models are less suitable for production
settings.

For example, in the case of SISO1, when the
number of workers is fixed at 4, the power pre-
diction accuracy is worse than that of the MIMO
model. For other fixed numbers of workers, the
accuracy results are comparable. In the case of
SISO2, for all cases, the accuracy results are worse
than that of the MIMO model. This shows that if
the two separate SISO models are generated with
appropriate training data, they can have accuracy
comparable with that of the MIMO model for some
of the metrics (e.g., power), but the two separate
SISO models generally have lower accuracy than
the MIMO model. Overall, MIMO models are
more resilient across a wide range of training data.

V. CONCLUSIONS

As we have shown [12], even simple systems
that de/compress files exhibit complex performance
and energy profiles. Control theory holds great
promise for the automated and optimal control
of such energy-aware systems. Before designing a
suitable controller, one must first identify a system
model.

In this paper, we have presented a methodology
for system identification, applied it to a represen-
tative file-compressor server, and experimentally

Model Fixed Input Order Accuracy

MIMO N/A 3
Power: 77%
Perf: 76%

SISO1 1 worker 1 Power: 73%
SISO1 2 workers 1 Power: 73%
SISO1 3 workers 1 Power: 73%
SISO1 4 workers 1 Power: 71%
SISO2 2395MHz Freq 1 Perf: 43%
SISO2 1995MHz Freq 2 Perf: 61%
SISO2 1596MHz Freq 1 Perf: 44%

Table I
EVALUATION OF MIMO AND SISOMODELS WITH

MULTI -DIMENSIONAL DATA .

evaluated the accuracy of SISO and MIMO models
of power consumption and performance. Although
potentially more complex, MIMO offers consis-
tently higher prediction accuracy (76–77%). SISO
was at best comparable to MIMO (73%), and at
worse close to half as accurate (43%). Collectively,
our results help to understand, quantify, and com-
pare the behavior of MIMO and SISO models of
energy-aware systems under representative work-
loads.

Based on the extensive data set we collected
in [12], we plan to evaluate additional MIMO
models, especially those with more than two input-
s/outputs, and those that explore other dimensions
(e.g., different compression algorithms and com-
pression levels). We also plan to design and imple-
ment actual SISO/MIMO controllers and evaluate
their ability to trade off power consumption and
performance. An important research question is to
quantify the costs (e.g., CPU, memory, power) for
executing more complex MIMO-based controllers,
and to investigate the effect of the model order on
these costs.
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