
On the Performance Variation in Modern Storage Stacks
Zhen Cao1, Vasily Tarasov2, Hari Prasath Raman1, Dean Hildebrand2, and Erez Zadok1

1Stony Brook University and 2IBM Research—Almaden
Appears in the proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17)

Abstract

Ensuring stable performance for storage stacks is im-
portant, especially with the growth in popularity of
hosted services where customers expect QoS guaran-
tees. The same requirement arises from benchmarking
settings as well. One would expect that repeated, care-
fully controlled experiments might yield nearly identi-
cal performance results—but we found otherwise. We
therefore undertook a study to characterize the amount
of variability in benchmarking modern storage stacks. In
this paper we report on the techniques used and the re-
sults of this study. We conducted many experiments us-
ing several popular workloads, file systems, and storage
devices—and varied many parameters across the entire
storage stack. In over 25% of the sampled configura-
tions, we uncovered variations higher than 10% in stor-
age performance between runs. We analyzed these vari-
ations and found that there was no single root cause: it
often changed with the workload, hardware, or software
configuration in the storage stack. In several of those
cases we were able to fix the cause of variation and re-
duce it to acceptable levels. We believe our observations
in benchmarking will also shed some light on addressing
stability issues in production systems.

1 Introduction
Predictable performance is critical in many modern
computer environments. For instance, to achieve good
user experience, interactive Web services require stable
response time [9, 20, 22]. In cloud environments users
pay for computational resources. Therefore, achieving
predictable system performance, or at least establish-
ing the limits of performance variation, is of utmost
importance for the clients’ satisfaction [37, 48]. In a
broader sense, humans generally expect repetitive ac-
tions to yield the same results and take the same amount
of time to complete; conversely, the lack of performance
stability, is fairly unsatisfactory to humans.

Performance variation is a complex issue and can
arise from nearly every layer in a computer system.
At the hardware level, CPU, main memory, buses, and
secondary storage can all contribute to overall perfor-
mance variation [9,22]. At the OS and middleware level,
when background daemons and maintenance activities
are scheduled, they impact the performance of deployed
applications. More performance disruptions come into
play when considering distributed systems, as applica-

tions on different machines have to compete for heavily
shared resources, such as network switches [9].

In this paper we focus on characterizing and analyz-
ing performance variations arising from benchmarking
a typical modern storage stack that consists of a file
system, a block layer, and storage hardware. Storage
stacks have been proven to be a critical contributor to
performance variation [18, 33, 40]. Furthermore, among
all system components, the storage stack is the corner-
stone of data-intensive applications, which become in-
creasingly more important in the big data era [8, 21].
Although our main focus here is reporting and analyz-
ing the variations in benchmarking processes, we believe
that our observations pave the way for understanding sta-
bility issues in production systems.

Historically, many experienced researchers no-
ticed how workloads, software, hardware, and the
environment—even if reportedly “identical”—exhibit
different degrees of performance variations in repeated,
controlled experiments [7, 9, 11, 22, 23]. We first en-
countered such variations in experiments using Ext4:
multiple runs of the same workload in a carefully con-
trolled environment produced widely different perfor-
mance results. Over a period of two years of collect-
ing performance data, we later found that such high per-
formance variations were not confined to Ext4. Over
18% of 24,888 different storage stack configurations that
we tried exhibited a standard deviation of performance
larger than 5% of the mean, and a range value (maxi-
mum minus minimum performance, divided by the av-
erage) exceeding 9%. In a few extreme cases, standard
deviation exceeded 40% even with numerous repeated
experiments. The observation that some configurations
are more stable than others motivated us to conduct a
more detailed study of storage stack performance varia-
tion and seek its root causes.

To the best of our knowledge there are no systematic
studies of performance variation in storage stacks. Thus,
our first goal was to characterize performance variation
in different storage stack configurations. However, mea-
suring this for even a single storage stack configuration
is time consuming; and measuring all possible stack con-
figurations is time-prohibitive. Even with a small frac-
tion of selected parameters, it could take more than 1.5
years of evaluation time (see Table 1). Therefore, in this
study we combined two approaches to reduce the con-
figuration space and therefore the amount of time to run
the experiments: (1) we used domain expertise to select

1

the most relevant parameters, and (2) we applied a Latin
Hypercube Sampling (LHS) to the configuration space.
Even for the reduced space, it took us over 33 clock days
to complete these experiments alone.

We focused on three local file systems (Ext4, XFS,
and Btrfs) which are used in many modern local and dis-
tributed environments. Using our expertise, we picked
several widely used parameters for these file systems
(e.g., block size, inode size, journal options). We also
varied the Linux I/O scheduler and storage devices, as
they can have significant impact on performance. We
benchmarked over 100 configurations using different
workloads and repeated each experiment 10 times to bal-
ance the accuracy of variation measurement with the
total time taken to complete these experiments. We
then characterized performance variation from several
angles: throughput, latency, temporally, spatially, and
more. We found that performance variation depends
heavily on the specific configuration of the stack. We
then further dove into the details, analyzed and explained
certain performance variations. For example: we found
that unpredictable layouts in Ext4 could cause over 16–
19% of performance variation in some cases. We discov-
ered that the magnitude of variation also depends on the
observation window size: in one workload, 40% of XFS
configurations exhibited higher than 20% variation with
a window size of 60s, but almost all of them stabilized
when the window size grew to 400s. Finally, we ana-
lyzed latency variations from various aspects, and pro-
posed a novel approach for quantifying the impacts of
each operation type on overall performance variation.

Our paper has three key contributions: � (1) To the
best of our knowledge, we are the first to provide a de-
tailed characterization of performance variation occur-
ring in benchmarking a typical modern storage stack.
We believe our study paves the way towards the bet-
ter understanding of complex storage stack performance
variations, in both experimental and production settings.
� (2) We conducted a comprehensive study of stor-
age stack performance variation. Our analysis includes
throughput and latency, and both spatial and temporal
variations. � (3) We offer insights into the root causes
of some performance variations, which could help any-
one who seeks stable results from benchmarking storage
systems, and encourage more follow-up work in under-
standing variations in production systems.

The rest of the paper is organized as follows. §2 ex-
plains background knowledge. §3 describes our experi-
mental methodology. We list our experimental settings
in §4. §5 evaluates performance variations from multiple
dimensions. §6 covers related work. We conclude and
discuss future directions in §7.

2 Background
The storage stack is an essential part of modern com-
puter systems, and critical to the performance of data-
intensive applications. Often, the storage stack is the
slowest component in a system and thus is one of the
main contributors to the overall variability in a system’s
performance. Characterizing this variation in storage-
stack performance is therefore essential for understand-
ing overall system-performance variation.

We first define common performance metrics and no-
tations used in this paper. Throughput is defined as the
average number of I/O operations completed per second.
Here we use a “Throughput-N” notation to represent the
throughput within the last N seconds of an observation.
There are two types of throughput that are used most fre-
quently in our analysis. One is cumulative throughput,
defined as the throughout from the beginning to the end
of the experiment. In this paper, cumulative throughput
is the same as Throughput-800 or Throughput-2000, be-
cause the complete runtime of a single experiment was
either 800 or 2,000 seconds, depending on the workload.
The other type is called instantaneous throughput, which
we denote as Throughput-10. Ten seconds is the small-
est time unit we collected performance for, in order to
avoid too much overhead (explained further in § 4).

Since our goal is to characterize and analyze collected
experimental data, we mainly use concepts from de-
scriptive statistics. Statistical variation is closely related
to central tendency, which is an estimate of the center of
a set of values. Variation (also called dispersion or vari-
ability), refers to the spread of the values around the cen-
tral tendency. We considered the most commonly used
measure for central tendency—the mean: x̄ =

∑N
i=1 xi.

In descriptive statistics, a measure of variation is usu-
ally a non-negative real number that is zero if all read-
ings are the same and increases as the measurements be-
come more dispersed. To reasonably compare variations
across datasets with different mean values, it is common
to normalize the variation by dividing any absolute met-
ric of variation by the mean value. There are several
different metrics for variation. In this paper we initially
considered two that are most commonly used in descrip-
tive statistical analysis:

• Relative Standard Deviation (RSD): the RSD, (or
Coefficient of Variation (CV)) is

RSD =

√
1

N−1

∑N
i=1(xi − x̄)2

x̄
(1)

• Relative Range: this is defined as the difference be-
tween the smallest and largest values:

RelativeRange =
max(X)−min(X)

x̄
(2)

2

Because a range uses maximum and minimum values in
its calculation, it is more sensitive to outliers. We did
not want to exclude or otherwise diminish the signifi-
cance of performance outliers. We found that even a few
long-running I/O operations can substantially worsen
actual user experience due to outliers (which are re-
producible). Such outliers have real-world impact, es-
pecially as more services are offloaded to the cloud, and
customers demand QoS guarantees through SLAs. That
is one reason why researchers recently have begun to fo-
cus on tail latencies [9, 17, 18]. In considering the two
metrics above, we felt that the RSD hides some of the
magnitudes of these variations—because using square
root tends to “compress” the outliers’ values. We there-
fore decided to use the Relative Range as our main met-
ric of variation in this work and the rest of this paper.

3 Methodology
Although we encountered storage stack performance
variations in past projects, we were especially struck
by this issue in our recent experiments on automated
recognition of optimal storage configurations. We found
that multiple runs of the same workload in a carefully
controlled environment could sometimes produce quite
unstable results. We later observed that performance
variations and their magnitude depend heavily on the
specific configuration of the storage stack. Over 18%
of 24,888 different storage stack configurations that we
evaluated (repeatedly over several workloads) exhibited
results with a relative range higher than 9% and relative
standard deviation higher than 5%.

Workloads also impact the degree of performance
variation significantly. For the same storage stack con-
figuration, experiments with different workloads could
produce different magnitudes of variation. For exam-
ple, we found one Btrfs configuration produces variation
with over 40% relative range value on one workload but
only 6% for another. All these findings led us to study
the characteristics and analyze performance variations in
benchmarking various storage stack configurations un-
der multiple workloads. Due to the high complexity of
storage stacks, we have to apply certain methodologies
in designing and conducting our experiments.

Reducing the parameter space. In this work we
focus on evaluating local storage stacks (e.g., Ext4,
Linux block layer, SSD). This is a useful basis for
studying more complex distributed storage systems
(e.g., Ceph [46], Lustre [27], GPFS [34], OpenStack
Swift [30]). Even a small variation in local storage sys-
tem performance can result in significant performance
fluctuations in large-scale distributed system that builds
on it [9, 25, 28].

Despite its simple architecture, the local storage stack
has a large number of parameters at every layer, result-

Parameter Space #Unique
Params.

#Unique
Configs.

Time
(years)

Ext4 59 2.7× 1037 7.8× 1033

XFS 37 1.4× 1019 4.1× 1015

Btrfs 54 8.8× 1026 2.5× 1023

Expert Space 10 1,782 1.52
Sample Space 10 107 33.4 days

Table 1: Comparison for Parameter Spaces. Time is computed
by assuming 15 minutes per experimental run, 10 runs per con-
figuration and 3 workloads in total.

ing in a vast number of possible configurations. For in-
stance, common parameters for a typical local file sys-
tem include block size, inode size, journal options, and
many more. It is prohibitively time consuming and im-
practical to evaluate every possible configuration ex-
haustively. As shown in Table 1, Ext4 has 59 unique
parameters that can have anywhere from 2 to numerous
allowed values each. If one experiment runs for 15 min-
utes and we conduct 10 runs for each configuration, it
will take us 7.8×1033 years of clock time to finish eval-
uating all Ext4 configurations.

Therefore, our first task was to reduce the parameter
space for our experiments by carefully selecting the most
relevant storage stack parameters. This selection was
done in close collaboration with several storage experts
that have either contributed to storage stack designs or
have spent years tuning storage systems in the field. We
experimented with three popular file systems that span
a range of designs and features. � (1) Ext4 [12] is a
popular file system that inherits a lot of internal struc-
tures from Ext3 [6] and FFS [26]) but enhances perfor-
mance and scalability using extents and delayed alloca-
tion. � (2) XFS [35,38] was initially designed for SGI’s
IRIX OS [38] and was later ported to Linux. It has at-
tracted users’ attention since the 90s thanks to its high
performance on new storage devices and its high scal-
ability regarding large files, large numbers of files, and
large directories. XFS uses B+ trees for tracking free
extents, indexing directory entries, and keeping track of
dynamically allocated inodes. � (3) Btrfs [5, 31] is a
complex file system that has seen extensive development
since 2007 [31]. It uses copy-on-write (CoW), allowing
efficient snapshots and clones. It has its own LVM and
uses B-trees as its main on-disk data structure. These
unique features are garnering attention and we expect
Btrfs to gain even greater popularity in the future.

For the three file systems above we experimented with
the following nine parameters. � (1) Block size. This
is a group of contiguous sectors and is the basic unit of
space allocation in a file system. Improper block size
selection can reduce file system performance by orders
of magnitude [18]. � (2) Inode size. This is one of
the most basic on-disk structures of a file system [3]. It
stores the metadata of a given file, such as its size, per-

3

missions, and the location of its data blocks. The inode
is involved in nearly every I/O operation and thus plays
a crucial role for performance, especially for metadata-
intensive workloads. � (3) Journal mode. Journaling is
the write-ahead logging implemented by file systems for
recovery purposes in case of power losses and crashes.
In Ext4, three types of journaling modes are supported:
writeback, ordered, and journal [13]. The writeback
mode journals only metadata whereas the journal mode
provides full data and metadata journaling. In ordered
mode, Ext4 journals metadata only, but all data is forced
directly out to the disk prior to its metadata being com-
mitted to the journal. There is a trade-off between file
system consistency and performance, as journaling gen-
erally adds I/O overhead. In comparison, XFS imple-
ments metadata journaling, which is similar to Ext4’s
writeback mode, and there is no need for journaling
in Btrfs because of its CoW nature. � (4) Allocation
Group (AG) count. This parameter is specific to XFS
which partitions its space into regions called Alloca-
tion Groups [38]. Each AG has its own data structures
for managing free space and inodes within its bound-
aries. � (5) Nodatacow is a Btrfs mount-time option
that turns the CoW feature on or off for data blocks.
When data CoW is enabled, Btrfs creates a new version
of an extent or a page at a newly allocated space [31].
This allows Btrfs to avoid any partial updates in case
of a power failure. When data CoW is disabled, par-
tially written blocks are possible on system failures. In
Btrfs, nodatacow implies nodatasum and compression
disabled. � (6) Nodatasum is a Btrfs mount-time option
and when specified, it disables checksums for newly cre-
ated files. Checksums are the primary mechanism used
by modern storage systems to preserve data integrity [3],
computed using hash functions such as SHA-1 or MD5.
� (7) atime Options. These refer to mount options that
control the inode access time. We experimented with
noatime and relatime values. The noatime option tells
the file system not to update the inode access time when
a file data read is made. When relatime is set, atime
will only be updated when the file’s modification time is
newer than the access time or atime is older than a de-
fined interval (one day by default). � (8) I/O scheduler.
The I/O Scheduler manages the submission of block I/O
operations to storage devices. The choice of I/O sched-
uler can have a significant impact on the I/O stack perfor-
mance [4]. We used the noop, deadline, and Completely
Fair Queuing (CFQ) I/O schedulers. Briefly explained,
the noop scheduler inserts all incoming I/O requests into
a simple FIFO queue in order of arrival; the deadline
scheduler associates a deadline with all I/O operations
to prevent starvation of requests; and the CFQ scheduler
try to provide a fair allocation of disk I/O bandwidth for
all processes that requests I/O operations. � (9) Storage

File System Parameter Value Range

Ext4 Block Size 1024, 2048, 4096
Inode Size 128, 512, 2048, 8192

Journal Mode
data=journal, ordered,

writeback

XFS Block Size 1024, 2048, 4096
Inode Size 256, 512, 1024, 2048
AG Count 8, 32, 128, 512

Btrfs Node Size 4096, 16384, 65536

Special Options
nodatacow, nodatasum,

default

All atime Options relatime, noatime
I/O Scheduler noop, deadline, cfq

Storage Devices
HDD (SAS, SATA), SSD

(SATA)
Table 2: List of parameters and value ranges.

device. The underlying storage device plays an impor-
tant role in nearly every I/O operation. We ran our ex-
periments on three types of devices: two HDDs (SATA
vs. SAS) and one (SATA) SSD.

Table 2 summarizes all parameters and the values
used in our experiments.

Latin Hypercube Sampling. Reducing the parameter
space to the most relevant parameters based on expert
knowledge resulted in 1,782 unique configurations (“Ex-
pert Space” in Table 1). However, it would still take
more than 1.5 years to complete the evaluation of ev-
ery configuration in that space. To reduce the space
further, we intelligently sampled it using Latin Hyper-
cube Sampling (LHS), a method often used to construct
computer experiments in multi-dimensional parameter
spaces [19,24]. LHS can help explore a search space and
discover unexpected behavior among combinations of
parameter values; this suited our needs here. In statistics,
a Latin Square is defined as a two-dimensional square
grid where each row and column have only one sam-
ple; Latin Hypercube generalizes this to multiple dimen-
sions and ensures that each sample is the only one in the
axis-aligned hyper-plane containing it [24]. Using LHS,
we were able to sample 107 representative configura-
tions from the Expert Space and complete the evaluation
within 34 days of clock time (excluding lengthy analy-
sis time). We believe this approach is a good starting
point for a detailed characterization and understanding
of performance variation in storage stacks.

4 Experimental Setup and Workloads
This section details our experimental setup, which used
a variety of storage devices and workloads.

Hardware. Our experiments were conducted on four
identical Dell PowerEdge R710 servers equipped with
Intel Xeon quad-core 2.4GHz CPUs. To maintain re-
alistically high ratio of the dataset size to the RAM
size and ensure that our experiments produce enough

4

Workload Average # Files Time(s) I/O Size Num. of R/W
File Size Default Actual Default Actual Read Write Append Threads Ratio

Webserver 16KB 1,000 640,000 60 800 WF - 16KB 100 10:1
Fileserver 128KB 10,000 80,000 60 800 WF WF 16KB 50 1:2
Mailserver 16KB 1,000 640,000 60 2,000 WF - 16KB 16 1:1

Table 3: Filebench workload characteristics used in our experiments. WF stands for Whole-File read or write.

I/O, we limited the RAM size on all machines to
4GB. Each server has three types of storage devices in-
stalled: (1) 250GB Fujitsu SATA HDD with 5,400 RPM,
(2) 147GB Seagate SAS HDD with 15,000 RPM, and
(3) 200GB Intel SATA SSD (MLC). This allowed us to
evaluate the impact of devices on storage stack perfor-
mance variation. On each device, we created a full-disk
partition. The machines ran an Ubuntu 14.04.1 LTS sys-
tem, with the kernel upgraded to version 4.4.12. We
also updated e2fsprogs, xfsprogs, and btrfs-progs to lat-
est version as of May, 2016.

Workloads. We used Filebench [14, 41] v1.5 to
generate various workloads in our experiments. In
each experiment, if not stated otherwise, we format-
ted and mounted the storage devices with a file sys-
tem and then ran Filebench. We used the follow-
ing three pre-configured Filebench macro-workloads:
� (1) Mailserver emulates the I/O workload of a multi-
threaded email server. It generates sequences of I/O
operations that mimic the behavior of reading emails
(open, read the whole file, and close), composing emails
(open/create, append, close, and fsync) and deleting
emails. It uses a flat directory structure with all the
files in one single directory, and thus exercises the abil-
ity of file systems to support large directories and fast
lookups. � (2) Fileserver emulates the I/O workload of
a server that hosts users’ home directories. Here, each
thread represents a user, which performs create, delete,
append, read, write, and stat operations on a unique set
of files. It exercises both the metadata and data paths of
the targeted file system. � (3) Webserver emulates the
I/O workload of a typical static Web server with a high
percentage of reads. Files (Web pages) are read sequen-
tially by multiple threads (users); each thread appends to
a common log file (Web log). This workload exercises
fast lookups, sequential reads of small files and concur-
rent data and metadata management.

Table 3 shows the detailed settings of these work-
loads. All are set to Filebench default values, except
for the number of files and the running time. As the
average file size is an inherent property of a workload
and should not be changed [41], the dataset size is deter-
mined by the number of files. We increased the number
of files such that the dataset size is 10GB—2.5× the ma-
chine RAM size. By fixing the dataset size, we normal-
ized the experiments’ set-size and run-time, and ensured
that the experiments run long enough to produce enough

I/O. With these settings, our experiments exercise both
in-memory cache and persistent storage devices [42].

We did not perform a separate cache warm-up phase
in our experiments because in this study we were inter-
ested in performance variation that occurred both with
cold and warm caches [42]. The default running time
for Filebench is set to 60 seconds, which is too short to
warm the cache up. We therefore conducted a “calibra-
tion” phase to pick a running time that was long enough
for the cumulative throughput to stabilize. We ran each
workload for up to 2 hours for testing purposes, and fi-
nally picked the running time as shown in Table 3. We
also let Filebench output the throughput (and other per-
formance metrics) every 10 seconds, to capture and ana-
lyze performance variation from a short-term view.

5 Evaluation
In this work we are characterizing and analyzing storage
performance variation from a variety of angles. These
experiments represent a large amount of data, and there-
fore, we first present the information with brief expla-
nations, and in subsequent subsections we dive into de-
tailed explanations. §5.1 gives an overview of perfor-
mance variations found in various storage stack configu-
rations and workloads. §5.2 describes a case study by us-
ing Ext4-HDD configurations with the Fileserver work-
load. §5.3 presents temporal variation results. Here,
temporal variations consist of two parts: changes of
throughput over time and latency variation.

5.1 Variation at a Glance
We first overview storage stack performance variation
and how configurations and workloads impact its mag-
nitude. We designed our experiments by applying the
methodology described in §3. We benchmarked config-
urations from the Sample Space (see Table 1) under three
representative workloads from Filebench. The workload
characteristics are shown in Table 3. We repeated each
experiment 10 times in a carefully-controlled environ-
ment in order to get unperturbed measurements.

Figure 1 shows the results as scatter plots broken
into the three workloads: Mailserver (Figure 1(a)), File-
server (Figure 1(b)), and Webserver (1(c)). Each sym-
bol represents one storage stack configuration. We use
squares for Ext4, circles for XFS, and triangles for
Btrfs. Hollow symbols are SSD configurations, while
filled symbols are for HDD. We collected the cumula-
tive throughput for each run. As described in §2, we

5

 0

10

20

30

40

 100 1000 10000

(a) Mailserver
R

an
g

e/
A

v
g

.
(%

)

Avg. Throughput (IOPS) (log-scale)
 100 1000 10000

(b) Fileserver

Avg. Throughput (IOPS) (log-scale)
 100 1000 10000

(c) Webserver

Avg. Throughput (IOPS) (log-scale)

Ext4-HDD
Ext4-SSD

XFS-HDD
XFS-SSD

Btrfs-HDD
Btrfs-SSD

Figure 1: Overview of performance and its variation with different storage stack configurations under three workloads: (a)
Maileserver, (b) Fileserver, and (c) Webserver. The X axis represents the mean of throughput over 10 runs; the Y axis shows
the relative range of cumulative throughput. Ext4 configurations are represented with squares, XFS with circles, and Btrfs with
triangles. HDD configurations are shown with filled symbols, and SSDs with hollow ones.

define the cumulative throughput as the average num-
ber of I/O operations completed per second through-
out each experiment run. This can also be represented
as Throughput-800 for Fileserver and Webserver, and
Throughput-2000 for Mailserver, as per our notation. In
each subfigure, the Y axis represents the relative range
of cumulative throughputs across the 10 runs. As ex-
plained in §2, here we use the relative range as the mea-
sure of variation. A higher relative range value indicates
higher degree of variation. The X axis shows the mean
cumulative throughput across the runs; higher values in-
dicate better performance. Since performance for SSD
configurations is usually much better than HDD config-
urations, we present the X axis in log10 scale.

Figure 1 shows that HDD configurations are generally
slower in terms of throughput but show a higher varia-
tion, compared with SSDs. For HDDs, throughput varies
from 200 to around 2,000 IOPS, and the relative range
varies from less than 2% to as high as 42%. Conversely,
SSD configurations usually have much higher through-
put than HDDs, ranging from 2,000 to 20,000 IOPS de-
pending on the workload. However, most of them ex-
hibit variation less than 5%. The highest range for any
SSD configurations we evaluated was 11%.

Ext4 generally exhibited the highest performance
variation among the three evaluated file systems. For the
Mailserver workload, most Ext4-HDD configurations
had a relative range higher than 12%, with the highest
one being 42%. The Fileserver workload was slightly
better, with the highest relative range being 31%. Half
of the Ext4-HDD configurations show variation higher
than 15% and the rest between 5–10%. For Webserver,
the Ext4-HDD configuration varies between 6–34%. All
Ext4-SSD configurations are quite stable in terms of per-
formance variation, with less than 5% relative range.

Btrfs configurations show a moderate level of varia-
tion in our evaluation results. For Mailserver, two Btrfs-
HDD configurations exhibited 40% and 28% ranges of
throughput, and all others remained under 15%. Btrfs
was quite stable under the Fileserver workload, with
the highest variation being 8%. The highest relative

range value we found for Btrfs-HDD configurations un-
der Webserver is 24%, but most of them were below
10%. Similar to Ext4, Btrfs-SSD configurations were
also quite stable, with a maximum variation of 7%.

XFS had the least amount of variation among the three
file systems, and is fairly stable in most cases, as oth-
ers have reported before, albeit with respect to tail laten-
cies [18]. For Mailserver, the highest variation we found
for XFS-HDD configurations was 25%. In comparison,
Ext4 was 42% and Btrfs was 40%. Most XFS-HDD con-
figurations show variation smaller than 5% under File-
server and Webserver workloads, except for one with
11% for Fileserver and three between 12–23% for Web-
server. Interestingly, however, across all experiments for
all three workloads conducted on SSD configurations,
the highest variation was observed on one XFS configu-
ration using the Webserver workload, which had a rela-
tive range value of 11%.

Next, we decided to investigate the effect of work-
loads on performance variation in storage stacks. Fig-
ure 2 compares the results of the same storage stack con-
figurations under three workloads. These results were
extracted from the same experiments shown in Figure 1.
Although we show here only all Ext4-HDD configura-
tions, we have similar conclusions for other file systems
and for SSDs. The bars represent the relative range of 10
repeated runs, and correspond to the left Y1 axis. The
average throughput of 10 runs for each configuration is
shown as symbols, and corresponds to the right Y2 axis.
The X axis consists of configuration details, and is for-
matted as the six-part tuple 〈block size - inode size -
journal option - atime option - I/O scheduler - device〉.
We can see that some configurations remain unstable in
all workloads. For example, the configuration 2K-128-
writeback-relatime-deadline-SATA exhibited high per-
formance variation (around 30%) under all three work-
loads. However, for some configurations, the actual
workload played an important role in the magnitude of
variation. For example, in the configuration 2K-2K-
writeback-noatime-noop-SATA, the Mailserver work-
load varies the most; but in the configuration 4K-512-

6

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

2K
-128-journal-

rel-ddln-sata

2K
-128-ordered-

rel-cfq-sata

2K
-128-w

rback-

rel-ddln-sata

2K
-128-journal-

no-cfq-sas

2K
-128-journal-

no-cfq-sata

2K
-128-ordered-

no-cfq-sas

2K
-512-w

rback-

no-ddln-sata

2K
-2K

-w
rback-

rel-cfq-sas

2K
-2K

-ordered-

no-noop-sas

2K
-2K

-ordered-

no-cfq-sas

2K
-2K

-w
rback-

no-noop-sata

4K
-128-journal-

no-cfq-sata

4K
-128-w

rback-

no-cfq-sas

4K
-512-ordered-

rel-noop-sas

4K
-512-ordered-

rel-noop-sata

4K
-512-w

rback-

rel-noop-sata

4K
-512-journal-

no-cfq-sata

4K
-512-journal-

no-ddln-sata

4K
-2K

-w
rback-

rel-cfq-sas

4K
-2K

-w
rback-

no-noop-sas

 0

 500

 1000

 1500

 2000

 2500

Y
1
:

R
an

g
e/

A
v
g
.

Y
2
:

 A
v
g
.
T

h
ro

u
g
h
p
u
t

(I
O

P
S

)

Y1: Mailserver Fileserver Webserver Y2: Mailserver Fileserver Webserver

Figure 2: Storage stack performance variation with 20 sampled Ext4-HDD configurations under three workloads. The range is
computed among 10 experiment runs, and is represented as bars corresponding to the Y1 (left) axis. The mean of throughput
among the 10 runs is shown with symbols (squares, circles, and triangles), and corresponds to the Y2 (right) axis. The X axis
represents configurations formatted by 〈block size - inode size - journal - atime - I/O scheduler - device〉.

ordered-relatime-noop-SATA, the highest range of per-
formance was seen on Fileserver. Finally, configura-
tions with SAS HDD drives tended to have a much
lower range variation but higher average throughput than
SATA drives.

5.2 Case Study: Ext4
Identifying root causes for performance variation in the
storage stack is a challenging task, even in experimental
settings. Many components in a modern computer sys-
tem are not isolated, with complex interactions among
components. CPU, main memory, and secondary stor-
age could all contribute to storage variation. Our goal
was not to solve the variation problem completely, but
to report and explain this problem as thoroughly as we
could. We leave to future work to address these root
causes from the source code level [44]. At this stage,
we concentrated our efforts solely on benchmarking lo-
cal storage stacks, and tried to reduce the variation to an
acceptable level. In this section we describe a case study
using four Ext4 configurations as examples. We focused
on Ext4-HDD (SATA) here, as this combination of file
systems and device types produced the highest variations
in our experiments (see Figures 1 and 2).

Figure 3 shows results as two boxplots for the File-
server workload, where each box plots the distribution
of throughputs across the 10 runs, with the relative range
shown below. The top border represents the 1st quartile,
the bottom border the 3rd quartile, and the line in the
middle is the median value. Whiskers show the maxi-
mum and minimum throughputs. We also plotted one
dot for the throughput of each run, overlapping with the
boxes but shifted to the right for easier viewing. The
X axis represents the relative improvements that we ap-
plied based on our successive investigations and uncov-
ering of root causes of performance variation, while the
Y axis shows the cumulative throughput for each exper-
iment run. Note that the improvement label is prefixed
with a “+” sign, meaning that an additional feature was

 0

 200

 400

 600

baseline

+no_lazy

+um
ount

+alloc

baseline

+no_lazy

+um
ount

+alloc

2048-2048-writeback-
noatime-noop-SATA

4096-512-writeback-
relatime-noop-SATA

T
h
ro

u
g
h
p
u
t

(I
O

P
S

)

47.0%

22.0% 19.2%

2.4%

23.7% 21.8%
16.0%

1.9%

Figure 3: Performance variation for 2 Ext4-HDD configura-
tions with several diagnoses. Each experiment is shown as
one box, representing a throughput distribution for 10 identical
runs. The top border line of each box marks the 1st quartile;
the bottom border marks the 3rd quartile; the line in the mid-
dle is the median throughput; and the whiskers mark maximum
and minimum values. The dots to the right of each box show
the exact throughputs of all 10 runs. The percentage numbers
below each box are the relative range values. The bottom label
shows configuration details for each figure.

added to the previous configuration, cumulatively. For
example, +umount actually indicates baseline + no lazy
+ umount. We also added labels on the bottom of each
subfigure showing the configuration details, formatted as
〈block size - inode size - journal option - atime option -
I/O scheduler - device〉.

After addressing all causes we found, we were able to
reduce the relative range of throughput in these config-
urations from as high as 47% to around 2%. In the rest
of this section, we detail each root cause and how we
addressed it.

Baseline. The first box for each subfigure in Figure 3
represents our original experiment setting, labeled base-
line. In this setting, before each experimental run,
we format and mount the file system with the targeted
configuration. Filebench then creates the dataset on
the mounted file system. After the dataset is created,
Filebench issues the sync command to flush all dirty
data and metadata to the underlying device (here, SATA

7

HDD); Filebench then issues an echo 3 > /proc/sys/vm/-
drop caches command, to evict non-dirty data and meta-
data from the page cache. Then, Filebench runs the File-
server workload for a pre-defined amount of time (see
Table 3). For this baseline setting, both Ext4-HDD con-
figurations show high variation in terms of throughput,
with range values of 47% (left) and 24% (right).
Lazy initialization. The first contributor to perfor-
mance variation that we identified in Ext4-HDD config-
urations is related to the lazy initialization mechanism in
Ext4. By default, Ext4 does not immediately initialize
the complete inode table. Instead, it gradually initializes
it in the background when the created file system is first
mounted, using a kernel thread called ext4lazyinit. After
the initialization is done, the thread is destroyed. This
feature speeds up the formatting process significantly,
but also causes interference with the running workload.
By disabling it during format time, we reduced the range
of throughput from 47% to 22% for Configuration 2048-
2048-writeback-noatime-noop-SATA. This improvement
is labelled +no lazy in Figure 3.
Sync then umount. In Linux, when sync is called, it
only guarantees to schedule the dirty blocks for writ-
ing: there is often a delay until all blocks are actually
written to stable media [29, 39]. Therefore, instead of
calling sync, we umount the file system each time af-
ter finishing creating the dataset and then mount it back,
which is labelled as +umount in Figure 3. After apply-
ing this, both Ext4-HDD configurations exhibited even
lower variation than the previous setting (disabling lazy
initialization only).
Block allocation and layout. After applying the
above improvements, both configurations still exhibited
higher than 16% variations, which could be unaccept-
able in settings that require more predictable perfor-
mance. This inspired us to try an even more strictly-
controlled set of experiments. In the baseline exper-
iments, by default we re-created the file system be-
fore each run and then Filebench created the dataset.
We assumed that this approach would result in iden-
tical datasets among different experiment runs. How-
ever, block allocation is not a deterministic procedure in
Ext4 [18]. Even given the same distribution of file sizes
and directory width, and also the same number of files
as defined by Filebench, multiple trials of dataset cre-
ation on a freshly formatted, clean file system did not
guarantee to allocate blocks from the same or even near
physical locations on the hard disk. To verify this, in-
stead of re-creating the file system before each run, we
first created the file system and the desired dataset on
it. We then dumped out the entire partition image using
dd. Then, before each run of Filebench, we used dd to
restore the partition using the image, and mounted the
file system back. This approach guaranteed an identical

block layout for each run.

 480

 500

 520

 540

 560

 0 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Block Number

default
s_hash_seed=null

Figure 4: Physical blocks of allocated files in Ext4 under the
Fileserver workload. The X axis represents the physical block
number of each file in the dataset. Since the Fileserver work-
load consists of small files, and one extent per file, we use the
starting block number for each file here. The Y axis is the final
cumulative throughput for each experiment run. Note that the
Y axis does not start from 0. Lines marked with solid circles are
experiment runs with the default setting; lines with triangles
represent experiment runs where we set the field s hash seed
in Ext4s’s superblock to null.

Figure 3 shows these results using +alloc. We can see
that for both Ext4-HDD configurations, we were able
to achieve around 2% of variation, which verified our
hypothesis that block allocation and layout play an im-
portant role in the performance variation for Ext4-HDD
configurations.

Storing the images of file systems using the dd com-
mand, however, could be too costly in practice, taking
hours of clock time. We found a faster method to gener-
ate reproducible Ext4 layouts by setting the s hash seed
field in Ext4’s superblock to null before mounting. Fig-
ure 4 shows the distribution of physical blocks for allo-
cated files in two sets of Fileserver experiments on Ext4.
This workload consists of only small files, resulting in
exactly one extent for each file in Ext4, so we used the
starting block number (X axis) to represent the corre-
sponding file. The Y axis shows the final cumulative
throughput for each experiment run. Here the lines start-
ing and ending with solid circles are 10 runs from the
experiment with the full-disk partition. The lines with
triangles represent the same experiments, but here we set
the s hash seed field in Ext4’s superblock to null. We
can see that files in each experiment run are allocated
into one cluster within a small range of physical block
numbers. In most cases, experimental runs with their
dataset allocated near the outer tracks of disks, which
correspond to smaller block numbers, tend to produce
higher throughput. As shown in Figure 4, with the de-
fault setting, datasets of 10 runs clustered in 10 differ-
ent regions of the disk, causing high throughput varia-
tion across the runs. By setting the Ext4 superblock pa-
rameter s hash seed to null, we can eliminate the non-
determinism in block allocation. This parameter deter-
mines the group number of top-level directories. By
default, s hash seed is randomly generated during for-

8

mat time, resulting in distributing top-level directories
all across the LBA space. Setting it to null forces Ext4 to
use the hard-coded default values, and thus the top-level
directory in our dataset is allocated on the same position
among different experiment runs. As we can see from
Figure 4, for the second set of experiments, the ranges of
allocated block numbers in all 10 experiment runs were
exactly the same. When we set the s hash seed parame-
ter to null, the relative range of throughput dropped from
and 16.6% to 1.1%. Therefore, setting this parameter
could be useful when users want stable benchmarking
results from Ext4.

In addition to the case study we conducted on Ext4-
HDD configurations, we also observed similar results
for Ext4 on other workloads, as well as for Btrfs. For
two of the Btrfs-HDD configurations, we were able to
reduce the variation to around 1.2%, by using dd to store
the partition image. We did not try to apply any improve-
ments on XFS, since most of its configurations were al-
ready quite stable (in terms of cumulative throughput)
even with the baseline setting, as shown in Figure 1.

5.3 Temporal Variation
In Sections 5.1 and 5.2, we mainly presented and an-
alyzed performance variation among repeated runs of
the same experiment, and only in terms of through-
put. Variation can actually manifest itself in many other
ways. We now focus our attention on temporal varia-
tions in storage stack performance—the variation related
to time. §5.3.1 discusses temporal throughput variations
and §5.3.2 focuses on latency variations.

5.3.1 Throughput over Time
After finding variations in cumulative throughputs, we
set out to investigate whether the performance variation
changes over time within single experiment run.

To characterize this, we calculated the throughput
within a small time window. As defined in §2, we
denote throughput with window size of N seconds as
Throughput-N. Figure 5 shows the Throughput-120
value (Y axis) over time (X axis) for Btrfs-HDD, XFS-
HDD, and Ext4-HDD configurations using the File-
server workload.

Here we use a window size of 120 seconds, mean-
ing that each throughput value is defined as the average
number of I/O operations completed per second with the
latest 120 seconds. We also investigated other window
sizes, which we discuss later. The three configurations
shown here exhibited high variations in the experiments
discussed in §5.1. Also, to show the temporal aspect of
throughput better, we extended the running time of this
experiment set to 2 hours, and we repeated each exper-
iment 10 times. Two lines are plotted connecting the
maximum and minimum throughput values among 10

 0

 300

 600

 0 0.5 1 1.5 2

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (Hour)

Ext4 Btrfs XFS

Figure 5: Throughput-120 over time for Btrfs, XFS, and Ext4
HDD configurations under the Fileserver workload. Each con-
figuration was evaluated for 10 runs. Two lines were plotted
connecting maximum and minimum throughput values among
10 runs. We fill in colors between two lines, green for Btrfs,
red for Ext4, and blue for XFS. We also plotted the average
Throughput-120 among 10 runs as a line running through the
band. The maximum relative range values of Throughput-120
for Ext4, Btrfs, and XFS are 43%, 23%, and 65%, while the
minimum values are 14%, 2%, and 7%, respectively.

runs. We fill in colors between two lines, this producing
a color band: green for Btrfs, red for Ext4, and blue for
XFS. The line in the middle of each band is plotted by
connecting the average Throughput-120 value among 10
runs. We observed in Figure 1(b) that for the Fileserver
workload, Ext4-HDD configurations generally exhibited
higher variations than XFS-HDD or Btrfs-HDD config-
urations in terms of final cumulative throughput. How-
ever, when it comes to Throughput-120 values, Figure 5
leads to some different conclusions. The Ext4-HDD
configuration still exhibited high variation in terms of
short-term throughout across the 2 hours of experiment
time, while the Btrfs-HDD configuration is much more
stable. Surprisingly, the XFS-HDD configuration has
higher than 30% relative range of Throughput-120 val-
ues for most of the experiment time, while its range for
cumulative throughput is around 2%. This suggests that
XFS-HDD configurations might exhibit high variations
with shorter time windows, but produces more stable re-
sults in longer windows. It also indicates that the choice
of window sizes matters when discussing performance
variations.

We can see from the three average lines in Figure 5
that performance variation exists even within one single
run—the short-term throughput varies as the experiment
proceeds. For most experiments, no matter what the file
system type is, performance starts slow and climbs up
quickly in the beginning phase of experiments. This is
because initially the application is reading cold data and
metadata from physical devices into the caches; once
cached, performance improves. Also, for some period of
time, dirty data is kept in the cache and not yet flushed to
stable media, delaying any impending slow writes. Af-
ter an initial peak, performance begins to drop rapidly
and then declines steadily. This is because the read per-

9

formance already reached its peak and cached dirty data
begins to be flushed out to slower media. Around sev-
eral minutes in, performance begins to stabilize, as we
see the throughput lines flatten.

The unexpected difference in variations for short-term
and cumulative throughput of XFS-HDD configurations
lead us to investigate the effects of the time window size
on performance variations. We calculated the relative
range of throughput with different window sizes for all
configurations within each file system type. We present
the CDFs of these range values in Figure 6. For example,
we conducted experiments on 39 Btrfs configurations.
With a window size of 60 seconds and total running
time of 800 seconds, the corresponding CDF for Btrfs is
based on 39× 800

60 = 507 relative range values. We can
see that Ext4’s unstable configurations are largely unaf-
fected by the window size. Even with Throughput-400,
around 20% of Ext4 configurations produce higher than
20% variation in terms of throughput. Conversely, the
range values for Btrfs and XFS are more sensitive to the
choice of window size. For XFS, around 40% of the
relative range values for Throughput-60 are higher than
20%, whereas for Throughput-400, nearly all XFS val-
ues fall below 20%. This aligns with our early conclu-
sions in §5.1 that XFS configurations are relatively stable
in terms of cumulative throughput, which is indeed cal-
culated based on a window size of 800 seconds; whereas
XFS showed the worst relative range for Throughput-60,
it stabilized quickly with widening window sizes, even-
tually beating Ext4 and Btrfs.

All the above observations are based on the through-
put within a certain window size. Another approach is
to characterize the instant throughput within an even
shorter period of time. Figure 7 shows the instanta-
neous throughput over time for various configurations
under the Fileserver workload. We collected and cal-
culated the throughput every 10 seconds. Therefore we
define instantaneous throughput as the average number
of I/O operations completed in the past 10 seconds. This
is actually Throughput-10 in our notation. We normal-
ize this by dividing each value by the maximum instan-
taneous throughput value for each run, to compare the
variation across multiple experimental runs. The X axis
still shows the running time.

We picked one illustrative experiment run for each
configuration (Ext4-HDD, XFS-HDD, Btrfs-HDD, and
Ext4-SSD). We can see from Figure 7 that for all con-
figurations, instantaneous performance fluctuated a lot
throughout the experiment. For all three HDD configu-
rations, the variation is even higher than 80% in the first
100 seconds. The magnitude for variation reduces later
in the experiments, but stays around 50%.

The throughput spikes occur nearly every 30 seconds,
which could be an indicator that the performance varia-

tion in storage stacks is affected by some cyclic activity
(e.g., kernel flusher thread frequency). For SSD config-
urations, the same up-and-down pattern exists, although
its magnitude is much smaller than for HDD configura-
tions, at only around 10%. This also confirms our find-
ings from §5.1 that SSDs generally exhibit more stable
behavior than HDDs.

5.3.2 Latency Variation
Another aspect of performance variation is latency, de-
fined as the time taken for each I/O request to complete.
Much work has been done in analyzing and taming
long-tail latency in networked systems [20, 22] (where
99.9th percentile latency is orders of magnitude worse
than the median), and also in local storage systems [18].
Throughout our experiments, we found out that long-tail
latency is not the only form of latency variation; there
are other factors that can impact the latency distribution
for I/O operations.

A Cumulative Distribution Function (CDF) is a com-
mon approach to present latency distribution. Fig-
ure 8(a) shows the latency CDFs for 6 I/O operations of
one Ext4-HDD configuration under the Fileserver work-
load. The X axis represents the latency in log10 scale,
while the Y axis is the cumulative percentage. We can
see that for any one experimental run, operations can
have quite different latency distribution. The latencies
for read, write, and create form two clusters. For exam-
ple, about 20% of the read operation has less than 0.1ms
latency while the other 80% falls between 100ms and 4s.
Conversely, the majority of stat, open, and delete opera-
tions have latencies less than 0.1ms.

The I/O operation type is not the only factor that im-
pacts the latency distribution. Figure 8(b) presents 10
CDFs for create from 10 repeated runs of the same ex-
periment. We can see for the 60th percentile, the latency
can vary from less than 0.1ms to over 100ms.

Different I/O operations and their latencies impact the
overall workload throughput to a different extent. With
the empirical data that we collected—per-operation la-
tency distributions and throughput—we were able to dis-
cover correlations between the speed of individual op-
erations and the throughput. We first defined a metric
to quantify the difference between two latency distribu-
tions. We chose to use the Kolmogorov-Smirnov test
(K-S test), which is commonly used in statistics to de-
termine if two datasets differ significantly [43]. For two
distributions (or discrete dataset), the K-S test uses the
maximum vertical deviation between them as the dis-
tance. We further define the range for a set of latency
distributions as the maximum distance between any two
latency CDFs. This approach allows us to use only
one number to represent the latency variation, as with
throughput. For each operation type, we calculated its

10

 0

20

40

60

80

100

 0 50 100 150 200

C
u

m
u

la
ti

v
e

P
ct

.
(%

)

Relative Range (%)

10s
60s

120s
180s
240s
400s

(a) Ext4

 0

20

40

60

80

100

 0 50 100 150 200

C
u

m
u

la
ti

v
e

P
ct

.
(%

)

Relative Range (%)

10s
60s

120s
180s
240s
400s

(b) Btrfs

 0

20

40

60

80

100

 0 50 100 150 200

C
u

m
u

la
ti

v
e

P
ct

.
(%

)

Relative Range (%)

10s
60s

120s
180s
240s
400s

(c) XFS

Figure 6: CDFs for relative range of throughput under Fileserver workload with different window sizes. For window size N,
we calculated the relative range values of throughput for all configurations within each file system type, and then plotted the
corresponding CDF.

 0

20

40

60

80

100

 0 100 200 300 400 500

N
o
rm

al
iz

ed
T

h
ro

u
g
h
p
u
t

(%
)

Time (s)

Ext4-HDD XFS-HDD Btrfs-HDD Ext4-SSD

Figure 7: Normalized instantaneous throughput
(Throughput-10) over time for experiments with various
workloads, file systems, and devices. The Y axis shows the
normalized values divided by the maximum instantaneous
throughput through the experiment. Only the first 500s are
presented for brevity.

range of latency variation for each configuration under
all three workloads. We then computed the Pearson Cor-
relation Coefficient (PCC) between the relative range of
throughput and the range of latency variation.

Figure 9 shows our correlation results. The PCC value
for any two datasets is always between [-1,+1], where
+1 means total positive correlation, 0 indicates no corre-
lation, and –1 means total negative correlation. Gener-
ally, any two datasets with PCC values higher than 0.7
are considered to have a strong positive correlation [32],
which we show in Figure 9 with a horizontal dashed red
line. The Y axis represents the PCC value while the X
axis is the label for each operation. We separate work-
loads with vertical solid lines. As most SSD configura-
tions are quite stable in terms of performance, we only
considered HDD configurations here. For Ext4 configu-
rations, open and read have the highest PCC values on
both Mailserver and Webserver workloads; however, on
Fileserver, open and stat have the strongest correlation.
These operations could possibly be the main contribu-
tors to performance variation on Ext4-HDD configura-
tions under each workload; such operations would rep-
resent the first ones one might tackle in the future to help
stabilize Ext4’s performance on HDD. In comparison,
write has a PCC value of only around 0.2, which indi-
cates that it may not contribute much to the performance

variation. Most operations show PCC values larger than
0.4, which suggest weak correlation. This is possibly
because I/O operations are not completely independent
with each other in storage systems.

For the same workload, different file systems exhibit
different correlations. For example, under the Webserver
workload, Ext4 show strong correlation on both read
and open; but for XFS, read shows a stronger correla-
tion than open and write. For Btrfs, no operation had
a strong correlation with the range of throughput, with
only read showing a moderate level of correlation.

Although such correlations do not always imply direct
causality, we still feel that this correlation analysis sheds
light on how each operation type might contribute to the
overall performance variation in storage stacks.

6 Related Work
To the best of our knowledge, there are no system-
atic studies of performance variation of storage stacks.
Most previous work focuses on long-tail I/O latencies.
Tarasov et al. [40] observed that file system performance
could be sensitive to even small changes in running
workloads. Arpaci-Dusseau [2] proposed an I/O pro-
gramming environment to cope with performance vari-
ations in clustered platforms. Worn-out SSDs exhibit
high latency variations [10]. Hao et al. [16] studied
device-level performance stability, for HDDs and SSDs.

For long-tail latencies of file systems, He et al. [18]
developed Chopper, a tool to explore a large input space
of file system parameters and find behaviors that lead
to performance problems; they analyzed long-tail laten-
cies relating to block allocation in Ext4. In comparison,
our paper’s goal is broader: a detailed characterization
and analysis of several aspects of storage stack perfor-
mance variation, including devices, block layer, and the
file systems. We studied the variation in terms of both
throughput and latency, and both spatially and tempo-
rally. Tail latencies are common in network or cloud
services [9, 22]: several tried to characterize and miti-
gate their effects [17, 20, 37, 48], as well as exploit them
to save data center energy [45]. Li et al. [22] character-
ized tail latencies for networked services from the hard-

11

 0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
u
m

.
P

ct
.
(%

)

Latency (ms)

 create
 delete
 open
 read
 stat
 write

(a) CDFs of operations within one single experiment run

 0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
u
m

.
P

ct
.
(%

)

Latency (ms)

(b) CDFs of create operation among repeated experiment runs

Figure 8: Latency CDF of one Ext4-HDD configuration under Fileserver workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

create delete fsync open read write create

delete

open

read

stat

write

open

read

write

P
ea

rs
o
n
 C

o
rr

el
at

io
n

C
o
ef

fi
ci

en
t

(P
C

C
) Mailserver Fileserver Webserver

Ext4 XFS Btrfs

Figure 9: Pearson Correlation Coefficient (PCC) between throughput range and operation types, for three workloads and three
file systems. The horizontal dashed red line at Y=0.7 marks the point above which a strong correlation is often considered to exist.

ware, OS, and application-level sources. Dean and Bar-
roso [9] pointed out that small performance variations
could affect a significant fraction of requests in large-
scale distributed systems, and can arise from various
sources; they suggested that eliminating all of them in
large-scale systems is impractical. We believe there are
possibly many sources of performance variation in stor-
age systems, and we hope this work paves the way for
discovering and addressing their impacts.

7 Conclusion
In this work we provided the first systematic study on
performance variation in benchmarking a modern stor-
age stack. We showed that variation is common in stor-
age stacks, although its magnitude depends heavily on
specific configurations and workloads. Our analysis re-
vealed that block allocation is a major cause of perfor-
mance variation in Ext4-HDD configurations. From the
temporal view, the magnitude of throughput variation
also depends on the window size and changes over time.
Latency distribution for the same operation type could
also vary even over repeated runs of the same exper-
iment. We quantified the correlation between perfor-
mance and latency variations using a novel approach.
Although most of our observations are made in exper-
imental settings, we believe they are a useful step to-
wards a thorough understanding of stability issues in
storage stacks of production systems. In conclusion, we
list three best practices for people either benchmarking
storage systems or dealing with performance variations
in real systems. The goal here is not to “teach,” but
rather provide some guidelines to the best of our knowl-
edge. � (1) Performance variation is a complex issue,
and could be caused and affected by various factors:

the file system, configurations of the storage system, the
running workload, or even the time window for quanti-
fying the performance. � (2) Non-linearity is inherent
in complex storage systems. It could lead to large dif-
ferences in results, even in well-controlled experiments;
conclusions drawn from these could be misleading or
even wrong. � (3) Disable all lazy initialization and any
background activities, if any, while formatting, mount-
ing, and experimenting on file systems.

Future Work. We believe that more work still needs
to be done to more fully understand the causes of dif-
ferent types of variation and especially to address them.
All experiments in this paper were conducted on freshly-
formatted file systems, and thus we only focused on per-
formance variations in such systems. We did not ana-
lyze aged file systems, a subject of our future work. We
plan to expand our parameter search space (e.g., com-
pression options in Btrfs [31]). Alas, Filebench currently
creates files by filling them with 0s, so first we have to
make Filebench output data with controlled compression
ratios. We plan to use other benchmarking tools such
as SPEC SFS 2014 [36] which comes with several pre-
configured and realistic workloads. We plan to expand
the study to new types of devices such as PCM [15, 47]
and SMRs [1], which have their own complex behavior
such as worse tail latencies due to internal garbage col-
lection [9, 10]. In the meanwhile, we will tackle other
storage layers (LVM, RAID) and networked/distributed
file systems. Finally, We plan to make all of our datasets
and sources public. This includes not only the data from
this work, but also a much larger dataset we continue to
collect (now over two years).

12

Acknowledgments
We thank the anonymous FAST reviewers and our shep-
herd Remzi Arpaci-Dusseau for their valuable com-
ments; and to Ted Ts’o for his assitance in understand-
ing Ext4’s behavior. This work was made possible
in part thanks to Dell-EMC, NetApp, and IBM sup-
port; NSF awards CNS-1251137, CNS-1302246, CNS-
1305360, and CNS-1622832; and ONR award N00014-
16-1-2264.

References
[1] Abutalib Aghayev, Mansour Shafaei, and Peter

Desnoyers. Skylight—a window on shingled disk
operation. Trans. Storage, 11(4):16:1–16:28, Oc-
tober 2015.

[2] R. H. Arpaci-Dusseau, E. Anderson, N. T., D. E.
Culler, J. M. Hellerstein, D. Patterson, and
K. Yelick. Cluster I/O with river: making the fast
case common. In Workshop on Input/Output in
Parallel and Distributed Systems, pages 10–22, At-
lanta, GA, May 1999.

[3] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.91 edition, May 2015.

[4] D. Boutcher and A. Chandra. Does virtualization
make disk scheduling passé? In Proceedings of the
1st USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage ’09), October 2009.

[5] BTRFS. http://btrfs.wiki.kernel.org/ .

[6] M. Cao, T. Y. Ts’o, B. Pulavarty, S. Bhattacharya,
A. Dilger, and A. Tomas. State of the Art: Where
we are with the Ext3 filesystem. In Proceedings of
the Linux Symposium, Ottawa, ON, Canada, July
2005.

[7] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan,
Saugata Ghose, Kevin Hsieh, Donghyuk Lee, Tian-
shi Li, Gennady Pekhimenko, Samira Khan, and
Onur Mutlu. Understanding latency variation in
modern DRAM chips: Experimental characteriza-
tion, analysis, and optimization. In Proceedings of
the 2016 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Com-
puter Science, SIGMETRICS’16, pages 323–336,
New York, NY, USA, 2016. ACM.

[8] Min Chen, Shiwen Mao, and Yunhao Liu. Big
data: A survey. Mobile Networks and Applications,
19(2):171–209, 2014.

[9] Jeffrey Dean and Luiz André Barroso. The tail
at scale. Commun. ACM, 56(2):74–80, February
2013.

[10] Peter Desnoyers. Empirical evaluation of nand
flash memory performance. In HotStorage ’09:
Proceedings of the 1st Workshop on Hot Topics in
Storage. ACM, 2009.

[11] Nosayba El-Sayed, Ioan A. Stefanovici, George
Amvrosiadis, Andy A. Hwang, and Bianca
Schroeder. Temperature management in data cen-
ters: Why some (might) like it hot. In Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMET-
RICS’12, pages 163–174, New York, NY, USA,
2012. ACM.

[12] Ext4. http:// ext4.wiki.kernel.org/ .

[13] Ext4 Documentation. https://www.kernel.org/doc/
Documentation/filesystems/ext4.txt .

[14] Filebench, 2016. https://github.com/filebench/
filebench/wiki .

[15] H. Kim and S. Seshadri and C. L. Dickey and
L. Chiu. Evaluating Phase Change Memory for
Enterprise Storage Systems: A Study of Caching
and Tiering Approaches. In Proceedings of the
12th USENIX Conference on File and Storage
Technologies, pages 33–45, Berkeley, CA, 2014.
USENIX.

[16] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A Chien, and
Haryadi S Gunawi. The tail at store: a revela-
tion from millions of hours of disk and ssd deploy-
ments. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 263–276,
2016.

[17] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh
Elnikety, Ricardo Bianchini, and Kathryn S.
McKinley. Few-to-many: Incremental parallelism
for reducing tail latency in interactive services. In
Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’15,
pages 161–175, New York, NY, USA, 2015. ACM.

[18] Jun He, Duy Nguyen, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Reducing file sys-
tem tail latencies with Chopper. In Proceedings of
the 13th USENIX Conference on File and Storage
Technologies, FAST’15, pages 119–133, Berkeley,
CA, USA, 2015. USENIX Association.

[19] Ronald L Iman, Jon C Helton, James E Camp-
bell, et al. An approach to sensitivity analysis
of computer models, part 1. introduction, input
variable selection and preliminary variable assess-
ment. Journal of quality technology, 13(3):174–
183, 1981.

13

[20] Myeongjae Jeon, Saehoon Kim, Seung-won
Hwang, Yuxiong He, Sameh Elnikety, Alan L.
Cox, and Scott Rixner. Predictive parallelization:
Taming tail latencies in web search. In Proceed-
ings of the 37th International ACM SIGIR Confer-
ence on Research & Development in Information
Retrieval, SIGIR’14, pages 253–262, New York,
NY, USA, 2014. ACM.

[21] Karthik Kambatla, Giorgos Kollias, Vipin Kumar,
and Ananth Grama. Trends in big data analyt-
ics. Journal of Parallel and Distributed Comput-
ing, 74(7):2561–2573, 2014. Special Issue on Per-
spectives on Parallel and Distributed Processing.

[22] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports,
and Steven D. Gribble. Tales of the tail: Hard-
ware, os, and application-level sources of tail la-
tency. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC’14, pages 9:1–9:14, New
York, NY, USA, 2014. ACM.

[23] Chieh-Jan Mike Liang, Jie Liu, Liqian Luo, An-
dreas Terzis, and Feng Zhao. RACNet: A high-
fidelity data center sensing network. In Proceed-
ings of the 7th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys’09, pages 15–28,
New York, NY, USA, 2009. ACM.

[24] W. J. Conover M. D. McKay, R. J. Beckman. A
comparison of three methods for selecting values
of input variables in the analysis of output from
a computer code. Technometrics, 21(2):239–245,
1979.

[25] Pradipta De Vijay Mann and Umang Mittaly. Han-
dling OS jitter on multicore multithreaded systems.
In Parallel & Distributed Processing Symposium
(IPDPS), 2009 IEEE International, IPDPS’09,
pages 1–12. IEEE, 2009.

[26] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for UNIX. ACM Transac-
tions on Computer Systems, 2(3):181–197, August
1984.

[27] Sun Microsystems. Lustre File System:
High-Performance Storage Architecture and
Scalable Cluster File System White Paper.
www.sun.com/servers/hpc/docs/ lustrefilesystem wp.
pdun.com/servers/hpc/docs/ lustrefilesystem wp.pdf ,
December 2007.

[28] Alessandro Morari, Roberto Gioiosa, Robert W
Wisniewski, Francisco J Cazorla, and Mateo
Valero. A quantitative analysis of OS noise.
In Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International, IPDPS’11,
pages 852–863. IEEE, 2011.

[29] E. B. Nightingale, K. Veeraraghavan, P. M. Chen,
and J. Flinn. Rethink the sync. In Proceedings
of the 7th Symposium on Operating Systems De-
sign and Implementation (OSDI 2006), pages 1–
14, Seattle, WA, November 2006. ACM SIGOPS.

[30] OpenStack Swift. http://docs.openstack.org/
developer/ swift/ .

[31] Ohad Rodeh, Josef Bacik, and Chris Mason.
BTRFS: The linux b-tree filesystem. Trans. Stor-
age, 9(3):9:1–9:32, August 2013.

[32] Richard P Runyon, Kay A Coleman, and David J
Pittenger. Fundamentals of behavioral statistics .
McGraw-Hill, 2000.

[33] Ricardo Santana, Raju Rangaswami, Vasily
Tarasov, and Dean Hildebrand. A fast and slip-
pery slope for file systems. In Proceedings of the
3rd Workshop on Interactions of NVM/FLASH with
Operating Systems and Workloads, INFLOW ’15,
pages 5:1–5:8, New York, NY, USA, 2015. ACM.

[34] F. Schmuck and R. Haskin. GPFS: A shared-disk
file system for large computing clusters. In Pro-
ceedings of the First USENIX Conference on File
and Storage Technologies (FAST ’02), pages 231–
244, Monterey, CA, January 2002. USENIX Asso-
ciation.

[35] SGI. XFS Filesystem Structure. http://oss.sgi.com/
projects/xfs/papers/xfs filesystem structure.pdf .

[36] SPEC SFS R© 2014. https://www.spec.org/sfs2014/ .

[37] Lalith Suresh, Marco Canini, Stefan Schmid, and
Anja Feldmann. C3: Cutting tail latency in
cloud data stores via adaptive replica selection. In
Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’15, pages 513–527, Berkeley, CA, USA,
2015. USENIX Association.

[38] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the XFS
file system. In Proceedings of the Annual USENIX
Technical Conference, pages 1–14, San Diego, CA,
January 1996.

[39] sync(8) - Linux man page. https:// linux.die.net/man/
8/sync.

[40] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer.
Benchmarking File System Benchmarking: It *IS*
Rocket Science. In Proceedings of HotOS XIII:The
13th USENIX Workshop on Hot Topics in Operat-
ing Systems, Napa, CA, May 2011.

[41] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A
flexible framework for file system benchmarking.
;login: The USENIX Magazine, 41(1):6–12, March
2016.

14

[42] Vasily Tarasov, Zhen Cao, Ming Chen, and Erez
Zadok. The dos and don’ts of file system bench-
marking. FreeBSD Journal, January/February,
2016.

[43] Olivier Thas. Comparing distributions. Springer,
2010.

[44] A. Traeger, I. Deras, and E. Zadok. DARC:
Dynamic analysis of root causes of latency dis-
tributions. In Proceedings of the 2008 Interna-
tional Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS 2008), pages
277–288, Annapolis, MD, June 2008. ACM.

[45] Balajee Vamanan, Hamza Bin Sohail, Jahangir
Hasan, and T. N. Vijaykumar. TimeTrader: Ex-
ploiting latency tail to save datacenter energy for
online search. In Proceedings of the 48th In-
ternational Symposium on Microarchitecture, MI-
CRO’48, pages 585–597, New York, NY, USA,
2015. ACM.

[46] S. Weil, S. Brandt, E. Miller, D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th
Symposium on Operating Systems Design and Im-
plementation (OSDI 2006), pages 307–320, Seat-
tle, WA, November 2006. ACM SIGOPS.

[47] H-S Philip Wong, Simone Raoux, SangBum Kim,
Jiale Liang, John P Reifenberg, Bipin Rajen-
dran, Mehdi Asheghi, and Kenneth E Goodson.
Phase change memory. Proceedings of the IEEE,
98(12):2201–2227, Dec 2010.

[48] Yunjing Xu, Zachary Musgrave, Brian Noble, and
Michael Bailey. Bobtail: Avoiding long tails in
the cloud. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI’13, pages 329–342, Berkeley,
CA, USA, 2013. USENIX Association.

15

