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ABSTRACT
Data integrity is a fundamental aspect of storage security and re-
liability. With the advent of network storage and new technology
trends that result in new failure modes for storage, interesting chal-
lenges arise in ensuring data integrity. In this paper, we discuss the
causes of integrity violations in storage and present a survey of in-
tegrity assurance techniques that exist today. We describe several
interesting applications of storage integrity checking, apart from se-
curity, and discuss the implementation issues associated with tech-
niques. Based on our analysis, we discuss the choices and trade-
offs associated with each mechanism. We then identify and for-
malize a new class of integrity assurance techniques that involve
logical redundancy. We describe how logical redundancy can be
used in today’s systems to perform efficient and seamless integrity
assurance.
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1. INTRODUCTION
Reliable access to data is a prerequisite for most computer sys-

tems and applications. There are several factors that cause unex-
pected or unauthorized modifications to stored data. Data can get
corrupted due to hardware or software malfunctions. Disk errors
are common today [26] and storage software that exists is typically
not designed to handle a large class of these errors. A minor in-
tegrity violation, when not detected by the higher level software
on time, could cause further loss of data. For example, a bit-flip
while reading a file system inode bitmap could cause the file sys-
tem to overwrite an important file. Therefore, prompt detection of
integrity violations is vital for the reliability and safety of the stored
data.

Integrity violations could also be caused by malicious intrusions.
Security advisory boards over the last few years have noticed a
steep rise in the number of intrusion attacks on systems [4]. A large
class of these attacks are caused by malicious modifications of disk
data. An attacker that has gained administrator privileges could po-
tentially make changes to the system, like modifying system utili-
ties (e.g., /bin files or daemon processes), adding back-doors or
Trojans, changing file contents and attributes, accessing unautho-
rized files, etc. Such file system inconsistencies and intrusions can
be detected using utilities like Tripwire [17, 18, 39].

There are different notions of integrity in storage. File system
consistency is one of the common ones. Most file systems today
come with integrity checking utilities such as the Unix fsck that
perform a scan through the storage device to fix logical inconsis-
tencies between data and meta-data. (Tools such as fsck are often
said to be performing “sanity” checking.) This reduces the like-
lihood of file corruption and wasted disk space in the event of a
system crash. Advanced methods like journaling [12] and trans-
actional file systems [8] ensure file system consistency even in the
event of unexpected system faults. File system inconsistency can
cause data corruption, but generally may not cause security threats;
files might become inaccessible due to inconsistency between the
meta-data and data caused by a system crash. Apart from file-
system inconsistencies, integrity violations in file data are a major
problem that storage system designers have to solve. Even a per-
fectly consistent file system can have its data corrupted, and normal
integrity checkers like fsck cannot detect these errors. Techniques
like mirroring, parity, or checksumming can be used to detect data
integrity violations at the file or block level. Cryptographic hash
functions could even detect malicious forging of checksums.

In this paper, we begin by presenting a survey of integrity assur-
ance techniques, classifying them under three different dimensions:
the scope of integrity assurance, the logical layer of operation, and
the mode of checking. We then discuss the various applications of
integrity checking such as security, performance enhancement, etc.



We also describe the different implementation choices of integrity
assurance mechanisms. Almost all integrity checking mechanisms
that we analyzed adopt some form of redundancy to verify integrity
of data. Techniques such as checksumming, parity etc., ignore the
semantics of the data and treat it as a raw stream of bytes. They ex-
plicitly generate and store redundant information for the sole pur-
pose of integrity checking. In contrast to these physical redundancy
techniques, we identify a new class of techniques for integrity as-
surance, where the redundant information is dependent on the se-
mantics of the data stored. Such logical redundancy techniques
often obviate the extra cost of explicitly accessing redundant data
and verifying integrity, by exploiting structural redundancies that
already exist in the data. For example, if an application stored a B+
tree on disk, with back pointers from the children to parents (for
more efficient scanning), those back pointers can also be used to
ensure the integrity of pointers within a node. Although some ex-
isting systems perform a minimal amount of such logical integrity
checking in the form of “sanity checks” on the structure of data,
we believe that these techniques can be generalized into first class
integrity assurance mechanisms.

The rest of this paper is organized as follows. Section 2 describes
causes of integrity violations. Section 3 describes the three most
commonly used integrity checking techniques. Section 4 presents a
more detailed classification of such techniques under three different
dimensions. Section 5 explores several interesting applications of
integrity checking. We discuss the various implementation choices
for integrity checkers in Section 6. In Section 7 we present the
new class of integrity assurance techniques that make use of logical
redundancy. We conclude in Section 8.

2. CAUSES OF INTEGRITY VIOLATIONS
Integrity violations can be caused by hardware or software mal-

functions, malicious activities, or inadvertent user errors. In most
systems that do not have integrity assurance mechanisms, unex-
pected modifications to data either go undetected, or are not prop-
erly handled by the software running above, resulting in software
crash or further damage to data. In this section, we describe three
main causes of integrity violations and provide scenarios for each
cause.

2.1 Hardware and Software Errors
Data stored on a storage device or transmitted across a network

in response to a storage request, can be corrupted due to hardware
or software malfunctioning. A malfunction in hardware could also
trigger software misbehavior resulting in serious damage to stored
data. For example, a hardware bit error while reading a file system’s
inode bitmap could cause the file system to overwrite important
files. Hardware errors are not uncommon in today’s modern disks.
Disks today can corrupt data silently without being detected [1].
Due to the increasing complexity of disk technology these days,
new errors occur on modern disks—for example, a faulty disk con-
troller causing misdirected writes [40] where data gets written to
the wrong location on disk. Most storage software systems are to-
tally oblivious to these kind of hardware errors, as they expect the
hardware to be fail-stop in nature—where the hardware either func-
tions or fails explicitly.

Bugs in software could also result in unexpected modification
of data. Buggy device drivers can corrupt data that is read from
the storage device. File system bugs can overwrite existing data or
make files inaccessible. Most file systems that adopt asynchrony
in writes could end up in an inconsistent state upon an unclean
system shutdown, thereby corrupting files or making portions of
data inaccessible.

The ever growing requirements for storage technology has given
rise to distributed storage where data need to be transferred through
unreliable networks. Unreliable networks can corrupt data that pass
through them. Unless the higher level protocols adopt appropriate
error checking and correcting techniques, these errors can cause
client software to malfunction.

2.2 Malicious Intrusions
Trustworthy data management in a computer system is an impor-

tant challenge that hardware and software designers face today. Al-
though highly critical and confidential information is being stored
electronically, and is accessed through several different interfaces,
new security vulnerabilities arise. For example, in a distributed
storage system, data can be accessed from remote locations through
untrusted network links; a network eavesdropper can gain access to
confidential data if the data is not sufficiently protected by methods
such as encryption. Damage to data integrity can often cause more
serious problems than confidentiality breaches: important informa-
tion may be modified by malicious programs or malicious users,
or faulty system components. For example, virus code could be in-
serted into binary executables, potentially resulting in the loss of all
data stored on a system. Operating systems that allow access to raw
disks can inadvertently aid an attacker to bypass security checks in
the file system, and cause damage to stored data.

2.3 Inadvertent User Errors
User errors can compromise data integrity at the application level.

A user action can break application level integrity semantics. For
example, an inadvertent deletion of a database file can cause a
DBMS to malfunction, resulting in data corruption. In general,
if user actions invalidate the implicit assumptions that the applica-
tions dealing with the data make, integrity violations can occur.

3. COMMON INTEGRITY TECHNIQUES
In this section, we discuss the three most common integrity as-

surance techniques that exist today in storage. All these techniques
maintain some redundant information about the data and ensure in-
tegrity by recomputing the redundant data from the actual data and
comparing it with the stored redundant information.

3.1 Mirroring
One simple way to implement integrity verification is data repli-

cation or mirroring. By maintaining two or more copies of the same
data in the storage device, integrity checks can be made by compar-
ing the copies. An integrity violation in one of the copies can be
easily detected using this method. While implementing this is easy,
this method is inefficient both in terms of storage space and time.
Mirroring can detect integrity violations caused by data corruption
due to hardware errors, but cannot help in recovering from the dam-
age, as a discrepancy during comparison does not provide informa-
tion about which of the copies is legitimate. Recovery is possible
using majority rules if the mirroring is 3-way or more. Mirroring
can be used to detect integrity violations which are caused due to
data corruption and generally not malicious modification of data.
A malicious user who wants to modify data can easily modify all
copies of the data, unless the location of the copies is maintained
in a confidential manner. Mirroring also cannot detect integrity
violations caused by user errors, because in most cases user mod-
ifications are carried out in all mirrors. RAID-1 uses mirroring to
improve storage reliability, but does not perform online integrity
checks using the redundant data.



3.2 RAID Parity
Parity is used in RAID-3, RAID-4, and RAID-5 [24] to vali-

date the data written to the RAID array. Parity across the array is
computed using the XOR (Exclusive OR) logical operation. XOR
parity is a special kind of erasure code. The basic principle behind
erasure codes is to transform N blocks of data, into N +M blocks
such that upon loss of any M blocks of data, they can be recovered
from the remaining N blocks, irrespective of which blocks are lost.
The parity information in RAID can either be stored on a separate,
dedicated drive, or be mixed with the data across all the drives in
the array. Most RAID schemes are designed to operate on fail-
stop disks. Any single disk failure in RAID (including the parity
disk) can be recovered from the remaining disks by just performing
an XOR on their data. This recovery process is offline in nature.
Although the parity scheme in RAID does not perform online in-
tegrity checks, it is used for recovering from a single disk failure in
the array. The organization of RAID-5 parity is shown in Figure 1.

XOR
A0

A1

A2

A Blocks

C0

Parity

C2

C3

C Blocks

B0

B1

Parity

B3

B Blocks

Parity

D1

D2

D3

D Blocks

Parity
Generation

Parity

Figure 1: RAID-5: Independent data disks with distributed
parity

3.3 Checksumming
Checksumming is a well known method for performing integrity

checks. Checksums can be computed for disk data and can be
stored persistently. Data integrity can be verified by comparing the
stored and the newly computed values on every data read. Check-
sums are generated using a hash function. The use of cryptographic
hash functions has become a standard in Internet applications and
protocols. Cryptographic hash functions map strings of different
lengths to short fixed size results. These functions are generally
designed to be collision resistant, which means that finding two
strings that have the same hash result should be infeasible. In ad-
dition to basic collision resistance, functions like MD5 [30] and
SHA1 [6] also have some properties like randomness. HMAC [19]
is a specific type of a hashing function where the hash generated is
cryptographically protected. It works by using an underlying hash
function over a message and a key, thereby detecting unauthorized
tampering of checksum values. It is currently one of the predomi-
nant means of ensuring that secure data is not corrupted in transit
over insecure channels (like the Internet). This can also be used in
the context of storage systems to ensure integrity during read.

4. INTEGRITY CHECKING TAXONOMY
There are several methods used to detect and repair data-integrity

violations. Almost all methods that exist today use some kind of
redundancy mechanisms to check for integrity. This is because in-
tegrity checking requires either syntactic or semantic comparison of
the data with some piece of information that is related to the actual
data. Comparison of related data helps detect integrity violations,
but cannot repair them. The main reason that comparison cannot
repair violations is that when there is a mismatch between two dif-
ferent kinds of data being compared, it is usually not possible to

determine which of them is legitimate. For example, if checksum-
ming is used to detect integrity violations in file data, a checksum
mismatch can only detect an integrity violation, but could not pro-
vide information whether the data is corrupted or the checksum
itself is invalid. There are a few techniques for recovering from
integrity violations once they are detected. Those techniques are
closely tied to the mechanism used to perform detection, and the
nature of redundancy that is employed.
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Figure 2: Taxonomy of techniques

In this section we describe the taxonomy of integrity checking
techniques that exist today. Figure 2 represents our classification of
integrity assurance techniques. We analyze the techniques in three
different dimensions: the scope of their assurance, the logical layer
at which they are designed to operate, and their checking modes.

4.1 Scope of Integrity Assurance
Data integrity can be guaranteed by several ways. Online in-

tegrity checks help to detect and in some cases recover from in-
tegrity violations. Some systems, instead of performing checks for
integrity, employ preventive methods to reduce the likelihood of an
integrity violation. In this section we classify integrity assurance
mechanisms into three main types, based on their goals: those that
perform preventive steps so as to avoid specific types of integrity vi-
olations; those that perform integrity checks and detect violations;
and those that are capable of recovering from damage once a viola-
tion is detected.

4.1.1 Avoidance
Some systems provide a certain level of integrity guarantee for

the data they store, so as to avoid explicit integrity checking mech-
anisms. These systems come with an advantage that they do not in-
cur additional overheads for integrity verification. The mechanism
used to provide integrity guarantees could incur some overhead, but
it is generally smaller than separate checking mechanisms. More-
over, these systems avoid the hassle of recovering from an integrity
damage once it is detected. In this section we discuss four exist-
ing methods that provide different levels of integrity assurances.
Read-only storage is a straight-forward means to avoid integrity vi-



olations due to malicious user activity or inadvertent user errors.
Journaling ensures file system consistency, encryption file systems
prevent malicious modification of file data with say, virus code, and
transactional file systems provide ACID transactions which appli-
cations can use to ensure semantic integrity of information.

Read-only Storage. Making the storage read-only is a simple
means to ensure data integrity. The read-only limitation can be
imposed at the hardware or software level. Hardware level read-
only storage is not vulnerable to software bugs or data modification
through raw disk access. However, they are vulnerable to hardware
errors like bit-flipping. File systems that enforce read-only charac-
teristics are still vulnerable to hardware and software errors, and to
raw disk access. However, they can prevent integrity violations due
to user errors. SFSRO [7], Venti [27], and Fossilization [14] are
systems are read-only to ensure data integrity.

Journaling. Journaling file systems were invented partly to take
advantage of the reliability of logging. Modern examples include
Ext2, NTFS, Reiserfs, etc. A journaling file system can recover
from a system crash by examining its log, where any pending changes
are stored, and replaying any operations it finds there. This means
that even after an unexpected shutdown, it is not necessary to scan
through the entire contents of the disk looking for inconsistencies
(as with scandisk on Windows or fsck on Unix): the system
just needs to figure out whatever has been added to the journal but
not marked as done. In a journaling file system, the transaction
interface provided by logging guarantees that either all or none of
the file system updates are done. This ensures consistency between
data and meta-data even in the case of unexpected system failures.
Although journaling cannot protect data from malicious modifica-
tions or hardware bit errors, it can ensure file system consistency
without performing any explicit integrity checks for each file.

Cryptographic File Systems. Cryptographic file systems en-
crypt file data (and even selected meta-data) to ensure the confi-
dentiality of important information. Though confidentiality is the
main goal of encryption file systems, a certain degree of integrity
assurance comes as a side effect of encryption. Unauthorized mod-
ification of data by malicious programs or users, such as replacing
system files with Trojans, becomes nearly impossible if the data is
encrypted with an appropriate cipher mode. Although data can be
modified, it is not feasible to do it in a predicable manner without
the knowledge of the encryption key. However, integrity violations
due to hardware errors cannot be prevented by using encryption.
Thus, cryptographic file systems provide protection of integrity for
a certain class of threat models. Several file systems such as Blaze’s
CFS [3], NCryptfs [41, 42], etc., support encryption.

Transactional File Systems. We are working towards build-
ing a transactional file system that exports an ACID transaction fa-
cility to the user level. In addition to supporting custom user-level
transactions for protecting the semantic integrity of data that appli-
cations see, our ACID file system aims at providing intra-operation
transactions (e.g., an individual rename operation is transaction
protected), such that atomicity and consistency guarantees are pro-
vided for every file system operation. This maintains the file system
in a consistent state and makes the file system completely recover-
able to a consistent state even in the event of unexpected system
failures. We are planning to build our file system using the log-
ging and locking features provided by the Berkeley Database Man-
ager [32] in the Linux kernel [15].

4.1.2 Detection
Most of the storage integrity assurance techniques that exist to-

day perform detection of integrity violations, but do not help in
recovering from the violation. In this section, we discuss those
techniques.

Checksumming. The checksumming techniques discussed in Sec-
tion 3 help in detecting integrity violations. They generally cannot
help recovery for two reasons. First, a mismatch between the stored
value and the computed value of the checksums just means that one
of them was modified, but it does not provide information about
which of them is legitimate. Stored checksums are also likely to be
modified or corrupted. Second, checksums are generally computed
using a one-way hash function and the data cannot be reconstructed
given a checksum value.

Mirroring. The mirroring technique described in Section 3 can
detect a violation by comparing the copies of data, but suffers from
the same problem as checksumming for correcting the data.

CRC. Cyclic Redundancy Check (CRC) is a powerful and easily
implemented technique to obtain data reliability in network trans-
missions. This can be employed by network storage systems to
detect integrity violations in data transmissions across nodes. The
CRC technique is used to protect blocks of data called frames. Us-
ing this technique, the transmitter appends an extra N -bit sequence
to every frame, called a Frame Check Sequence (FCS). The FCS
holds redundant information about the frame that helps the trans-
mitter detect errors in the frame. The CRC is one of the most com-
monly used techniques for error detection in data communications.

Parity. Parity is a form of error detection that uses a single bit
to represent the odd or even quantities of ‘1’s and ‘0’s in the data.
Parity usually consists of one parity bit for each eight bits of data,
which can be verified by the receiving end to detect transmission
errors. Network file systems benefit from parity error detection, as
they use the lower level network layers, which implement parity
mechanisms.

4.1.3 Correction
When an integrity violation is detected by some means, some

methods can be used to recover data from the damage. We discuss
two in this section.

Majority Vote. The majority vote strategy helps to resolve the
problem of determining whether the actual data or the redundant
information stored is unmodified (legitimate), in the event of a mis-
match between both of them. The majority vote technique can be
employed with detection techniques like mirroring. When there are
N copies of the data (N > 2), upon an integrity violation, the data
contained in the majority of the copies can be believed to be le-
gitimate, to some level of certainty. The other copies can then be
recovered from the content in the majority of the copies.

RAID Parity. RAID parity (e.g., RAID 5) uses an erasure code
to generate parity information at the block level or bit level. The in-
dividual disks in RAID should be fail-stop in nature, which means
that in the event of a failure of some means, the disks should stop
working thereby explicitly notifying the RAID controller of a prob-
lem. A failure in the disk can mean several things including a viola-
tion in the integrity of their data. Once a failure (integrity violation)
is detected by the fail-stop nature of the hardware, the parity infor-



mation stored can be used to reconstruct the data in the lost disk.
The procedure to reconstruct the data in a RAID array is discussed
in Section 3.

4.1.4 Detection and Correction
Error detection and correction algorithms are used widely in net-

work transport protocols. These algorithms combine the function-
alities of detection of integrity violations and even correcting them
to a certain level. Some of these algorithms are now being used in
storage devices also, for detecting and correcting bit errors. In this
section we discuss three algorithms employed in local and network
storage systems today.

ECC. Error Correction Codes (ECCs) [13] are an advanced form
of parity detection often used in servers and critical data applica-
tions. ECC modules use multiple parity bits per byte (usually 3) to
detect double-bit errors. They are also capable of correcting single-
bit errors without raising an error message. Some systems that sup-
port ECC can use a regular parity module by using the parity bits
to make up the ECC code. Several storage disks today employ er-
ror correcting codes to detect and correct bit errors at the hardware
level. Usually, to correct an N -bit sequence, at least lg(N) bits of
parity information are required for performing the correction part.
Hamming codes are one popular class of ECCs [25].

FEC. Forward Error Correction (FEC) [2] is a popular error de-
tection and correction scheme employed in digital communications
like cellular telephony and other voice and video communications.
In FEC, the correction is performed at the receiver end using the
check bits sent by the transmitter. FEC uses the Reed-Solomon
algorithm [28] to perform correction. FEC is generally not used
in storage hardware, but network file systems that use lower level
network protocols benefit from it.

RAID Level 2. RAID-2 [24] uses memory-style error correcting
codes to detect and recover from failures. In an instance of RAID-
2, four data disks require three redundant disks, one less than mir-
roring. Since the number of redundant disks is proportional to the
log() of the total number of disks in the system, storage efficiency
increases as the number of data disks increases. The advantage of
RAID-2 is that it can perform detection of failures even if the disks
are not fail-stop in nature. If a single component fails, several of
the parity components will have inconsistent values, and the failed
component is the one held in common by each incorrect subset.
The lost information is recovered by reading the other components
in a subset, including the parity component, and setting the miss-
ing bit to 0 or 1 to get the proper parity value for that subset. Thus
multiple redundant disks are required to identify the failed disk, but
only one is needed to recover the lost information.

4.2 Logical Layers
Integrity assurance techniques can operate at various system lev-

els, depending on the nature of the system and the requirements.
Designing the integrity assurance technique at each of these system
levels have distinct security, performance, and reliability implica-
tions. In this section we classify integrity assurance techniques into
five different levels: hardware, device driver, network, file system,
and user levels.

4.2.1 Hardware Level
The lowest physical level where an integrity assurance mecha-

nism can operate is the hardware level. Mechanisms operating at
the hardware level have two key advantages. First, they usually

perform better than software level mechanisms, because simple in-
tegrity checkers implemented using custom hardware run faster.
Second, hardware-level integrity checkers do not consume CPU
cycles, thereby reducing the CPU load on the main host proces-
sor. There are two disadvantages of operating at the hardware level.
First, the amount of information available to ensure integrity is usu-
ally more limited at the hardware level than at the upper levels such
as the device driver or the core OS levels. Therefore, semantic data
integrity cannot be ensured at the hardware level. For example, an
on-disk error correcting mechanism can only ensure integrity at a
block level and cannot guarantee file system consistency, as it gen-
erally has no information about which blocks are data blocks and
meta-data blocks. An exception to this is Semantically-Smart Disk
Systems (SDS) [34] which decipher file-system–level information
at the firmware level. Second, integrity checking at the hardware
level can capture only a small subset of the integrity violations, as
the checked data should pass through several upper levels before it
finally reaches the application, and hence there is enough room for
subsequent data corruptions at those levels. Therefore, hardware-
level error checks are generally rudimentary in nature, and they
have to be augmented with suitable software level mechanisms so
as to ensure significant integrity assurance. In this section we dis-
cuss three existing systems that employ hardware level integrity
assurance mechanisms.

On-Disk Integrity Checks. Data read from a disk is suscepti-
ble to numerous bursts of errors caused by media defects, thermal
asperity and error propagation in electronics. Thermal asperity is
a read signal spike caused by sensor temperature rise due to con-
tact with disk asperity or contaminant particles. Error bursts can be
many bytes in length. The basis of all error detection and correc-
tion in storage disks is the inclusion of redundant information and
special hardware or software to use it. Each sector of data on the
hard disk contains 512 bytes or 4,096 bits of user data. In addition
to these bits, an additional number of bits are added to each sector
for ECC use (sometimes also called error correcting circuits when
implemented in hardware). These bits do not contain data, but con-
tain information about the data that can be used to correct many
problems encountered trying to access the real data bits. There are
several different types of error correcting codes that have been in-
vented over the years, but the type commonly used on magnetic
disks is the Reed-Solomon algorithm, named for researchers Irving
Reed and Gus Solomon. Reed-Solomon codes are widely used for
error detection and correction in various computing and communi-
cations media, including optical storage, high-speed modems, and
data transmission channels. They have been chosen because they
are faster to decode than most other similar codes, can detect (and
correct) large numbers of missing bits of data, and require the least
number of extra ECC bits for a given number of data bits. On-
disk integrity checks suffer from the general problem of hardware
level integrity checkers: they do not have much information to per-
form semantic integrity checks, and they capture only a subset of
integrity violations.

Semantically-Smart Disk Systems. Semantically Smart Disk
Systems attempt to provide file-system–like functionality without
modifying the file system. Knowledge of a specific file system is
embedded into the storage device, and the device provides addi-
tional functionality that would traditionally be implemented in the
file system. Such systems are relatively easy to deploy, because
they do not require modifications to existing file system code. As
these systems decipher information from the file system running on
top, they can perform file system integrity checks at the hardware



level, thereby combining the performance advantages of hardware
level integrity checkers, with as much information needed for per-
forming semantic integrity assurance.

Hardware RAID. The hardware RAID parity discussed in Sec-
tions 3 and 4.1 are implemented in the RAID controller hardware.

4.2.2 Device Driver Level
In this section we discuss two systems that employ integrity as-

surance techniques at the device driver level.

NASD. Network Attached Secure Disks (NASDs) [10] is a stor-
age architecture for enabling cost effective throughput scaling. The
NASD interface is an object-store interface, based loosely on the
inode interface for Unix file systems. Since network communica-
tion is required for storage requests such as read and write, NASDs
perform integrity checks for each request sent through the network.
NASDs’ security is based on cryptographic capabilities. Clients
obtain capabilities from a file manager using a secure and private
protocol external to NASD. A capability consists of a public por-
tion and a private key. The private key portion is a cryptographic
key generated by the file manager using a keyed message digest
(MAC). The network attached drive can calculate the private key
and compare it with the client-supplied message digest. If there is a
mismatch, NASD will reject the request, and the client must return
to the file manager to retry. NASDs do not perform integrity checks
on data, as software implementations of cryptographic algorithms
operating at disk rates are not available with the computational re-
sources expected on a disk. Miller’s scheme for securing network-
attached disks uses encryption to prevent undetectable forging of
data [21].

Software RAID. Software RAID is a device driver level im-
plementation of the different RAID levels discussed in Sections 3
and 4.1. Here the integrity assurance and redundancy techniques
are performed by the software RAID device driver, instead of the
RAID controller hardware. The advantage with software RAID is
that no hardware infrastructure is required for setting up the RAID
levels between any collections of disks or even partitions. Gener-
ally, software RAID does not perform as well as hardware RAID.
Secondly, atomicity guarantees for data update and parity update
are generally weaker in software RAID than in hardware RAID.

4.2.3 File System Level
The file system is one of the most commonly used level for im-

plementing data integrity assurance mechanisms. This is because
the file system level is the highest level in the kernel that deals with
data management, and has the bulk of information about the or-
ganization of data on the disk, so as to perform semantic integrity
checks on the data. Moreover, since file systems run inside the ker-
nel, the extent of security that they provide is generally higher than
user-level integrity checkers.

On-Disk File Systems. Almost all on-disk file systems per-
form offline consistency checking using user-level programs like
fsck. Most of these consistency checking programs run at startup
after an unclean shutdown of the operating system, or they are ex-
plicitly initiated by the administrator. For this reason, they can-
not capture dynamic transient bit errors in the hardware that could
compromise file system consistency at run time. Journaling file sys-
tems like Ext3, IBM’s JFS, and ReiserFS use transactional seman-
tics for avoid file system inconsistencies. Solaris’s ZFS [37] avoids
data corruption by keeping the data on the disk self-consistent at

all times. It manages data using transaction groups that employ
copy-on-write technology to write data to a new block on disk be-
fore changing the pointers to the data and committing the write.
Because the file system is always consistent, time-consuming re-
covery procedures such as fsck are not required if the system is
shutdown in an unclean manner. ZFS is designed to provide end-
to-end 64-bit checksumming for all data, helping to reduce the risk
of data corruption and loss. ZFS constantly checks data to ensure
that it is correct, and if it detects an error in a mirrored pool, the
technology can automatically repair the corrupt data.

The Protected File System (PFS) [35] is an architecture for uni-
fying meta-data protection of journaling file systems with the data
integrity protection of collision resistant cryptographic hashes. PFS
computes hashes from file system blocks and uses these hashes to
later verify the correctness of their contents. The hashes are com-
puted by an asynchronous thread called hashd and are stored in the
file system journal log for easy reading. Using write ordering based
on journaling semantics for the data and the hashes, PFS ensures
the integrity of every block of data read from the disk.

Stackable File Systems. Our implementation of checksummed
NCryptfs [33] and I3FS [16] perform integrity checking at the Vir-
tual File System (VFS) level. Stackable file systems are a way to
add new functionality to existing file systems. Stackable file sys-
tems operate transparently between the VFS and lower file systems,
and require no modifications of lower-level file systems.

Distributed File Systems. Most of the distributed file systems
perform integrity checks on their data, because the data could get
transmitted back and forth through untrusted networks in a dis-
tributed environment. Distributed file systems that exist today adopt
a wide range of mechanisms to ensure integrity. The Google File
System [9] is a scalable distributed file system that stores data in
64MB chunks. Each chunkserver uses checksumming to detect
corruption of the stored data. Every chunk is broken up into 64KB
blocks and a 32-bit checksum value is computed for each of them.
For reads, the chunkserver verifies the checksum of the data blocks
before returning any data to the requester. Therefore, chunkservers
do not propagate corruptions to other machines. The checksum
read and update procedures are highly optimized for better perfor-
mance in the Google File System.

SFSRO [7] is a read-only distributed file system that allows a
large number of clients to access public, read-only data in a secure
manner. In a secure area, a publisher creates a digitally signed
database out of a file system’s contents, and then replicates the
data on untrusted content-distribution servers, allowing for high
availability. SFSRO avoids performing any cryptographic opera-
tions on the servers and keeps the overhead of cryptography low
on the clients. Blocks and inodes are named by handles, which are
collision-resistant cryptographic hashes of their contents. Using
the handle of the root inode of a file system, clients can verify the
contents of any block by recursively checking hashes. Storing the
hashes in naming handles is an efficient idea adopted by SFSRO,
which not just improves performance, but also simplifies integrity
checking operations.

4.2.4 Application Level
There are several application level utilities that run at the user

level, performing file system integrity checks. We discuss four
commonly used utilities in this section.

Tripwire. Tripwire [17, 18] is a popular integrity checking tool
designed for Unix, to aid system administrators to monitor their file



systems for unauthorized modifications. Tripwire reads the security
policy for files in the file system and then performs scheduled in-
tegrity checks based on checksum comparison. The main goal of
Tripwire is to detect and prevent malicious replacement of key files
in the system by Trojans or other malicious programs.

Samhain. Samhain [31] is a multi-platform, open source solu-
tion for centralized file integrity checking and host-based intrusion
detection on POSIX systems (e.g., Unix, Linux, and Windows). It
was designed to monitor multiple hosts with potentially different
operating systems from a central location, although it can also be
used as a standalone application on a single host. Samhain sup-
ports multiple logging facilities, each of which can be configured
individually. Samhain offers PGP-signed databases and configura-
tion files and a stealth mode to protect against attempts to subvert
the integrity of the Samhain client.

Radmind. Radmind [5] is a suite of Unix command-line tools
and a server designed to administer the file systems of multiple
Unix machines remotely. At its core, Radmind operates as Trip-
wire: it detects changes to any managed file system object (e.g.,
files, directories, links, etc.), and once a change is detected, Rad-
mind can optionally reverse the change.

Osiris. Osiris [23] is a host integrity monitoring system that pe-
riodically monitors one or more hosts for change. It maintains de-
tailed logs of changes to the file system, user, and group lists, res-
ident kernel modules, etc. Osiris can be configured to email these
logs to the administrator. Hosts are periodically scanned and, if de-
sired, the records can be maintained for forensic purposes. Osiris
uses OpenSSL for encryption and authentication in all components.

4.3 Online vs. Offline Integrity Checks
Some systems like I3FS [16], SFSRO [7], PFS [35] etc., adopt

online integrity checking which means that they ensure integrity in
the critical path of a read or write operation. Such systems are much
more effective than offline integrity checkers like fsck, Tripwire,
Samhain, etc. This is because online integrity checkers can detect
integrity violations before the violation could cause damage to the
system. For example, I3FS can detect malicious replacement of bi-
nary executables at the time they are read (for executing) and hence
can prevent execution immediately. With offline methods that per-
form integrity checking in scheduled intervals of time, there is a
window of vulnerability during which they cannot prevent the dam-
age caused by an intrusion. Therefore, from the security viewpoint,
online integrity checkers are better than offline ones. However, on-
line methods mostly come with performance costs. Performing
operations like checksum comparison in the critical section of a
file system read could slow down the system noticeably. Offline
integrity checkers generally run in an asynchronous manner and
hence do not pose significant performance problems. Depending
on the importance of the data to be protected, a suitable integrity
assurance mechanism can be chosen by the administrator. For vital
data, online integrity checkers are better suited.

5. USES OF INTEGRITY CHECKING
5.1 Security

Data-integrity assurance techniques go a long way in making a
computer system secure. A large class of attacks on systems today
are made possible by malicious modification of key files stored on
the file systems. If authorized modifications to files are detected

in time, damage caused by the intrusion can be reduced or even
prevented. In this section we discuss three different applications of
integrity assurance in the viewpoint of systems security.

Intrusion Detection. In the last few years, security advisory
boards have seen an increase in the number of intrusion attacks
on computer systems. A large class of these intrusion attacks are
performed by replacing key binary executables like the ones in
the /bin directory with custom back-doors or Trojans. Integrity
checking utilities like Tripwire [18], Checksummed NCryptfs [33],
and I3FS [16] detect unauthorized modification or replacement of
files with the help of checksums. Online notification of integrity
violations and immediate prevention of access to the corrupted file
helps in reducing the damages caused by the intrusion. Self-Securing
Storage [36] prevents intruders from undetectably tampering with
or permanently deleting stored data, by internally auditing and log-
ging operations within a window. System administrators can use
this information to diagnose intrusions.

Non-Repudiation and Self-Certification. Distributed stor-
age systems like SFSRO [7] and NASD [10] have public- or private-
key-based signatures for integrity assurance. Each request sent be-
tween nodes of the network is appended with a public-key-based
signature generated from the request contents. This method pro-
vides authentication and assurance about the integrity of the re-
quest received at the receiver’s end, and it also helps in ensuring
non-repudiation and self-certification because only the right sender
can generate the signature.

Trusting Untrusted Networks. Distributed file systems ex-
change control and data information over untrusted networks. In-
tegrity assurance mechanisms like tamper-resistant HMAC check-
sums and public key signatures verify that the information sent
through untrusted networks is not modified or corrupted.

5.2 Performance
The design of a certain class of integrity assurance mechanisms

takes advantage of already existing redundant information to im-
prove system performance. We discuss two examples where re-
dundant information helps improve performance.

Duplicate Elimination. Low-Bandwidth Network File Sys-
tem (LBFS) [22] and Venti [27] use checksums for eliminating du-
plicates in their data objects. Since duplicate data objects share
the same checksum value, a reasonably collision-resistant check-
summing scheme could help identify duplicates by comparing their
checksums. This method of duplicate identification is efficient be-
cause the length of data that needs to be compared is usually 128-
bit checksums, compared to data blocks which could be of the or-
der of kilobytes. Duplicate elimination helps in reducing storage
space and enables better cache utilization, and hence improves per-
formance. Checksums are used for duplication elimination in the
Rsync protocol [38].

Indexing. Checksums are a good way to index data. Object disks
can use checksums for indexing their objects [20]. SFSRO uses col-
lision resistant checksums for naming blocks and inodes. Though
highly collision-resistant checksums can be slightly larger than tra-
ditionally used integers, they help achieve dual functionality with
a small incremental cost. Using checksums for naming handles of-
fers an easy method for retrieving the checksums associated with
blocks and thus it improves integrity checking performance.



5.3 Detecting Failures
Integrity checks on raw data can be used to identify disk failures.

Data corruption is an important symptom of a disk failure and disks
that are not fail-stop in nature could still continue to operate after
silently corrupting the data they store. Fail-stop disks stop func-
tioning upon a failure, thereby explicitly notifying the controller
that they failed. Non-recoverable disk errors have to be identified in
time so as to protect at least portions of the data; integrity checking
techniques can be used to achieve this goal. Some modern disks al-
ready detect failures using on-disk integrity checking mechanisms.
In systems like RAID-5 that assume the fail-stop nature of individ-
ual disks to detect failures, checksumming can be added to enable
them to perform automatic detection and recovery of disk failures,
even in the case of non-fail-stop disks.

6. IMPLEMENTATION CHOICES

6.1 Granularity of Integrity Checking
There are several different granularities at which integrity checks

can be performed. For example, if checksumming is used, the size
of data to be checksummed can be either a byte, a block, or even a
whole file stored on disk. Choosing the right granularity of data to
be checksummed for a particular system is important for achieving
good performance and security. Operating at a finer granularity
for integrity checks generally results in too many computations of
redundant information, especially when the access pattern is large
bulk reads. On the other hand, having a large enough granularity
of data could result in more I/O for smaller reads, because an entire
chunk of data needs to be read for performing an integrity check.
Therefore, the optimal choice of granularity depends on the nature
of the system and also on the general access pattern. In this section
we discuss four different choices of granularities at which integrity
checks can be performed, along with their trade-offs.

Block Level. Usually, hardware level and device driver level
integrity assurance mechanisms operate at the granularity of disk
blocks. This is mainly because higher level abstractions like page,
file, etc., are not visible at these lower levels. Most of the con-
figurations of RAID and NASD discussed in Section 4.2 perform
integrity checks at the block level. For physical redundancy check-
ing like checksumming, checksums are computed for each block
on disk and then stored. Upon reading a disk block, its checksum
will be recomputed and compared with the stored value. In block-
level checksumming, for large reads that span a large number of
disk blocks, the number of checksum computations and compar-
isons required can be large. To mitigate this problem, most of the
block level integrity checkers are implemented in hardware. Block
level integrity checkers cannot perform file system level seman-
tic integrity checking and hence they are limited in their scope.
The Protected File System (PFS) discussed in Section 4.2 employs
checksumming at a block granularity, but at the file system level.

Network Request Level. In distributed file systems, the re-
quests sent between different nodes of the network need to be au-
thentic so as to ensure security. Several distributed storage systems
such as NASD adopt public key signatures or HMAC checksums
to authenticate requests sent between nodes. The sender appends
a signature with every request and it is verified at the receiver end.
NASDs adopt integrity checking for requests but not for data, be-
cause network request transfers are more important than data trans-
fers, and forging network requests could break confidentiality.

Page Level. Data integrity assurance techniques at the file sys-
tem level generally operate at a page granularity, as the smallest
unit of data read from the disk by a file system is usually a page.
Since file system page sizes are usually larger than disk block sizes,
operating at a page level often results in a better balance between
the number of checksums computations required in proportion to
the size of data read. The checksummed NCryptfs discussed in
Section 4.2 performs checksumming at a page level. Every time a
new page is read from the disk, NCryptfs recomputes the check-
sum and compares it with the stored value to verify the integrity
of the page data. I3FS also has a mode for performing per-page
checksumming [16].

File Level. Application level integrity checkers such as Tripwire
perform checksumming at the file level. The advantage with file-
level checksumming is that the storage space required for storing
the checksums is reduced compared to page level checksumming,
because each file has only one checksum value associated with it.
In page level checksumming, large files could have several check-
sum values associated with them, requiring more storage space and
efficient retrieval methods. For that reason, I3FS also includes a
mode to perform whole-file checksumming.

6.2 Storing Redundant Data
Integrity checking requires the management of redundant infor-

mation (physical or logical) persistently. Because many integrity
assurance methods are online in nature and operate during the crit-
ical section of reads and writes, efficiency is a key property that the
storage and retrieval mechanisms should have. There are a several
different techniques that existing mechanisms adopt. In this section
we discuss a few of them.

SFSRO stores collision-resistant cryptographic checksums of file
system objects in the form of naming handles [7]. Venti [27], a
network storage system, uses unique hashes of block contents to
identify a block. In SFSRO, blocks and inodes are named using the
checksums of their contents, so that given the naming handle of the
root inode of a file system, a client can verify the contents of any
block by recursively checking hashes. This is an efficient way of
optimizing performance for storing and retrieving checksums. On-
disk parity information for error-correcting codes is stored at the
block level, much closer to the relevant blocks, to avoid additional
disk rotation or seeks for reading the parity information.

Checksummed NCryptfs [33] uses parallel files to store the page-
level checksums for each file. Each file in the file system has an as-
sociated hidden checksum file which stores the checksums of each
of the file pages. Whenever a file is read, the associated checksum
is read from the hidden file and compared for integrity violations.
The advantage of this method is that it can be easily implemented
in a transparent manner across different underlying file systems.
Checksummed NCryptfs can be used with any underlying on-disk
or network file systems. The problem with using parallel files is
that each time a file is opened, it gets translated to opening two
files (the checksum file also). This affects performance to some
extent.

I3FS uses in-kernel Berkeley databases (KBDB) [15] to store
both page level and whole file checksums. Since KBDB supports
efficient storage and retrieval of 〈key,value〉 pairs in the form
of B-trees, hash tables, etc., it enables easy storage and retrieval of
checksums, keyed by inode numbers and page numbers. PFS [35]
stores block level checksums for both data and meta-data blocks as
part of the journal, indexed by a logical record number. It also has
an in-memory hash table for easy retrieval of checksums from the
journal.



7. LOGICAL REDUNDANCY
Techniques that involve logical redundancy exploit the seman-

tics of data to verify integrity. Logical redundancy mechanisms
can be used to perform integrity checks by exploiting the inherent
semantic redundancy that already exists in the data. An example
of a system that employs logical redundancy is the Pilot operating
system [29] whose file system meta-data is advisory in nature in
that the entire meta-data of a file can be regenerated by scanning
through the file data. It stores meta-data for faster access to the
file, but it can potentially use this information to perform integrity
checks on the file when needed by just comparing the regenerated
value and the stored value of the meta-data. Similarly, in some size-
changing stackable file systems [43] the index files that store map-
ping information for sizes are totally reconstructible from the file
data. This can also be used for performing online integrity checks
to detect inconsistencies between file sizes.

Logical redundancy is a common method used by databases to
maintain the semantic integrity of information they store [11]. We
have identified that the general technique of logical redundancy
can be exploited by storage systems at various levels, to implement
seamless integrity checking. The main advantage of this method is
that there is minimal additional overhead imposed by the integrity
checking mechanism, because the storage and perhaps retrieval of
redundant information is already performed by the system for other
purposes. There are several areas in storage where logical redun-
dancy can be exploited to ensure the integrity of data. We discuss
three in this section.

7.1 Pilot File System
The Pilot file system is part of the Pilot Operating System [29].

The Pilot file system’s uniqueness is its robustness. This is achieved
primarily through the use of reconstructible maps. Many systems
make use of a file scavenger, a startup consistency checker for a file
system, like fsck. In Pilot, the scavenger is given first-class status,
in the sense that the file structures were all designed from the begin-
ning with the scavenger in mind. Each file page is self-identifying
by virtue of its label, written as a separate physical record adjacent
to the one holding the actual contents of the page. Conceptually,
one can think of a file page access as proceeding to scan all known
volumes, and checking the label of each page encountered until
the desired one is found. In practice, this scan is performed only
once by the scavenger, which leaves behind maps on each volume
describing what it found there. Pilot then uses the maps and incre-
mentally updates them as file pages are created and deleted. The
logical redundancy of the maps does not imply lack of importance,
because the system would be not be efficient without them. Since
they contain only redundant information, they can be completely
reconstructed should they be lost. In particular, this means that
damage to any page on the disk can compromise only data on that
page. The primary map structure is the volume file map, a B-tree
keyed on file-UID and page-number which returns the device ad-
dress of the page. All file storage devices check the label of the
page and abort the I/O operation in case of a mismatch; mismatch
does not occur in normal operation and generally indicates the need
to scavenge the volume. The volume file map uses extensive com-
pression of UIDs and run-encoding of page numbers to maximize
the out-degree of the internal nodes of the B-tree and thus minimize
its depth.

The volume allocation map is also an important part of the Pi-
lot file system. It is a table that describes the allocation status of
each page on the disk. Each free page is a self-identifying member
of a hypothetical file of free pages, allowing reconstruction of the
volume allocation map.

The Pilot file system is a very good example for how logical re-
dundancy can be exploited for performing integrity checks. How-
ever, the Pilot operating system is just a research OS and is not in
use today. In general, with logical redundancy, although we can-
not ensure block data integrity, we can ensure meta-data integrity
without storing any additional information. For key files in the file
system whose integrity has to be monitored, its meta-data can be re-
constructed each time the file is read, and can be compared with the
stored meta-data. This can detect inconsistencies between the data
and meta-data. This method of online integrity checking is useful
in cases where important files are frequently updated by concurrent
processes, giving room for inconsistencies during a system fault.

7.2 File System Bitmaps
Current Unix file systems such as Ext2 use several bitmaps for

managing meta-data. For example, in Ext2, inode table entries are
identified through inode bitmaps. Each bit represents the current
state of an entry in the inode table within that group, where 1 means
“used” and 0 means “free/available.” In addition to this bitmap, the
file system also stores the current state of the inode which exists
in the inode table. Whenever an inode is deleted, the file system
marks the entry in the inode table as “deleted.” This is redundant
information maintained by Ext2 which is presently used by file sys-
tem startup integrity checkers like fsck to reconstruct the bitmaps
when the file system is corrupted due to a system crash.

This logical redundancy can be used for performing online in-
tegrity checks. In this scenario, integrity checks help prevent two
kinds of potential problems: unexpected loss of data, and wasted
inodes and disk blocks. A transient hardware bit error while read-
ing the inode bitmap could make an existing file inaccessible. If a
bitmap value for a used inode is read as free, then the file system
could overwrite the existing inode for a newly created file, thereby
making the file pointed to by the older inode unreachable. This also
makes the blocks occupied by the older file inaccessible, resulting
in wasted disk space. Similarly, if while reading the inode bitmap, a
bit error occurs, this could result in a free inode being read as used,
and the corresponding inode will be wasted. By performing online
integrity checks based on logical redundancy, bit errors while read-
ing bitmap blocks can easily be identified, and their effects can be
prevented.

7.3 On-Disk Data Structures
Several indexing schemes and data storage patterns are being

employed for efficient retrieval of data from secondary storage de-
vices. Hash files and B-trees are the most common examples. B-
trees are balanced trees that are optimized for situations when part
or all of the tree must be maintained in secondary storage such as a
magnetic disk. Since disk accesses are expensive time-consuming
operations, a B-tree tries to minimize the number of disk accesses.
For example, a B-tree with a height of 2 and a branching factor
of 1,001 can store over one billion keys but requires at most two
disk accesses to search for any node. Each node other than the
leaf nodes in a B-tree has pointers to several children. One of the
common integrity problems with B-trees are pointer corruptions.
A pointer corruption in a single node of a B-tree can cause serious
problems while reading the data stored in it, as the entire branch-
ing path will be changed due to the wrong pointer value. Several
methods can be used to perform integrity checks in B-trees. The
most common among them is to store the checksums of the child
nodes along with the pointers in each node. With these checksums,
each time a pointer is followed, the checksum of the child node
can be computed and compared with the stored value. This method
can effectively detect integrity violations in B-trees, but is not quite



efficient. A modification to a single leaf node data requires the re-
computation and storing the checksums of the entire ancestor path
up to the root. Moreover, computing and comparing checksums for
each pointer access could seriously affect performance.

Logical redundancy techniques can be employed for perform-
ing efficient integrity checks in B-trees. If each child node has a
back pointer to its parent, every time we follow a pointer, we can
check if the new child node visited points back to its parent. This
way pointer corruptions can easily be detected without the hassle of
generating and comparing checksums. Although this method can-
not ensure the integrity of data in the child nodes, it can effectively
detect pointer corruptions with minimal space and time overheads.

8. CONCLUSIONS AND FUTURE WORK
This paper presents a survey of different integrity assurance mech-

anisms that are in use today. We have analyzed integrity assurance
techniques from three different dimensions in our taxonomy: the
scope of assurance, logical layer, and checking mode. We have
also discussed several interesting applications of integrity assur-
ance. We analyzed how existing systems that employ integrity
checks can use redundant data to improve their performance and
add new functionality. We presented real examples for some of the
systems. We discussed several implementation choices for integrity
checking granularity and managing redundant information.

We formalized a new class of efficient integrity assurance mech-
anisms called logical redundancy and discussed three examples
where it can be used. In our taxonomy we describe integrity as-
surance techniques in four different viewpoints: the redundancy
mechanisms used, their scope, their level of operation, and the fre-
quency at which checks are performed. We discussed the operation
of several existing systems in each of those viewpoints.

Our experience describing the taxonomy of integrity assurance
techniques has helped us focus our thinking on exploring more log-
ical redundancy techniques for integrity checking at low cost, in a
highly efficient manner. We hope to explore further systems that
maintain redundant information as part of their normal operation,
but do not quite use them for performing integrity checks. These
systems can be made more secure and efficient, by making use of
the information that they maintain.
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