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Abstract

This project has two goals. The first goal is to improve
application performance by reducing context switches
and data copies. We do this by either running select sec-
tions of the application in kernel-mode, or by creating
new, more efficient system calls. The second goal is to
ensure that kernel safety is not violated when running
user-level code in the kernel. We do this by implement-
ing various hardware- and software-based techniques
for runtime monitoring of memory buffers, pointers, as
well as higher-level, OS-specific constructs such as spin-
locks and reference counters; the latter techniques can
also be used for code written specifically for the OS. We
prototyped several of these techniques. For certain appli-
cations, we demonstrate performance improvements as
high as 80%. Moreover, our kernel safety checks show
overheads that are as little as 2%.

1 Introduction
Software development is hard, and kernel code develop-
ment is harder, which is why most programs are written
in user space, where more tools are available to develop
and debug one’s code. Developers, however, would like
to develop and run applications in the kernel because
they can perform better there: overheads due to context
switching and data copies between the kernel and the
user address spaces are eliminated. Kernel debuggers,
even when they are available, are unsuitable for debug-
ging race conditions and other timing-related issues.

Our goal in this project is to combine the best of both
worlds: allow users to develop and debug their code in
user-level, while running their code inside the kernel. To
achieve that, we are developing a kernel-aware C devel-
opment environment (KGCC), kernel infrastructure to
work with KGCC-compiled code, as well as a host of
useful utilities. Our compilation system has both static
and dynamic components. To improve application per-
formance, we use two approaches. First, we mark the
code to instruct the compiler to pack code segments at
run time into a single small buffer, make it available
for the kernel using specially-mapped physical mem-
ory, and then instruct the kernel to execute the code

segment directly in kernel-mode. Second, we captured
system-call traces for many commodity user programs
such as graphical environments, Web browsers, long-
running daemons (e.g., Sendmail and Apache), and even
small programs like /bin/ls. We analyzed these traces
and located a number of frequently-executed sequences
for which a new, unified system call would be more effi-
cient. We implemented and benchmarked some of these
sequences.

Running user-written code inside the OS requires that
the safety of the kernel environment—and hence of all
users and applications—not be violated. Therefore, a
substantial part of our research focuses on techniques to
make kernel code safer to run. The techniques we are de-
veloping are applicable not just for user-level code that
is executed in the kernel, but also for (1) code written
directly for the kernel, and (2) long-running user level
programs that provide important privileged services that
must run as reliably as possible (e.g., e-commerce ap-
plications). To improve kernel safety, we use three ap-
proaches which we are integrating into KGCC. First, we
used hardware-based techniques such as segmentation.
We used parts of the user-level bounds-protecting library
Electric Fence [12] in the Linux kernel. Electric Fence
protects buffers from overflow and underflow by plac-
ing the buffers on page boundaries and inserting a pro-
tected “guardian” page at the boundary; any access to a
guardian page results in a hardware page-fault. Second,
we used software-based techniques. We ported the GNU
Bounds-Checking Compiler (BCC) [5] to the Linux ker-
nel. BCC includes not just bounds-checking tests, but
also pointer checking and validation, malloc/free check-
ing, and a few more. Third, we are enhancing KGCC to
include OS-specific tests. Our KGCC can check and val-
idate at run time the proper use of kernel-specific aspects
such as semaphores and spin-locks, reference counts,
and other higher-level invariants.

Instrumenting a lot of kernel code could add overhead.
We are considering some techniques for turning off cer-
tain checks using simple heuristics such as the number
of times a particular check was executed. Eventually, we
hope to develop tools and techniques that will make ker-
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nel code development as easy as user-level code, while
making both future operating systems and user-level ap-
plications more efficient and safe.

This paper is organized as follows. Section 2 dis-
cusses techniques for speeding applications up when
they invoke system calls. Section 3 presents techniques
for verifying kernel code safety. Section 4 concludes.

2 System Call Optimizations
Long-running server applications can easily execute bil-
lions of common data-intensive system calls each day.
In exchange for providing a secure and uniform interface
for user applications to request services from the kernel,
system calls incur large overheads due to data copies
across the user-kernel boundary and context switches.
We lessen these penalties in two ways. First, we analyze
system call invocations in a system, extract commonly-
used sequences, and develop new system calls to per-
form the task of a given sequence. This reduces both
context switches and data copies. We implemented sev-
eral of these system calls and benchmarked them to es-
timate the benefits of this technique. Second, we intro-
duce a new framework, Compound System Calls (Cosy),
to enhance the performance of such applications. Cosy
provides a mechanism to execute data-intensive code
segments in the kernel safely. Cosy encodes a C code
segment containing system calls in a compound struc-
ture. The kernel executes this aggregate compound di-
rectly, thus avoiding data copies between user space and
kernel-space. With the help of a Cosy-GCC compiler,
regular C code can use Cosy facilities with minimal
changes. Cosy-GCC automatically identifies and en-
codes zero-copy opportunities across system calls. To
ensure safety in the kernel, we use a combination of
static and dynamic checks, and we also exploit kernel
preemption and hardware features such as x86 segmen-
tation. We implemented the system and instrumented
a few data-intensive applications such as those with
database access patterns. Our benchmarks show perfor-
mance improvements of 20–80% for CPU-bound appli-
cations.

2.1 Related Work
The networking community has long known that better
throughput can be achieved by exchanging more data at
once than repeatedly in smaller units. For example, a
large number of READDIR operations are followed by
many GETATTR operations. Compound Operations were
introduced in NFSv4 [18], in which a client may encap-
sulate several operations for processing. This aggrega-
tion can provide performance benefits over slow network
channels. In the context of system calls, the slow chan-
nels that prohibit the user application from getting opti-
mal performance are context switches and data copies.

Many Internet applications such as HTTP and FTP
servers often perform a common task: read a file from
disk and send it over the network to a remote client. To
speed up this common action, AIX and Linux created
a system call called sendfile and Microsoft’s IIS has
a similar TransmitFile function. HTTP servers us-
ing these system calls report performance improvements
ranging from 92% to 116% [7].

The Cassyopia project [14] suggested to profile the
address-space–crossing behavior of a component (be-
tween address spaces on the same or different ma-
chines), and then have the compiler reduce the number
of crossings in order to improve performance.

Zero-copy is a well known technique to share the data
instead of copying. IBM’s adaptive fast path architecture
[7] aims to improve the efficiency of network servers.
Zero-copy is also used on file data to enhance the system
performance by doing intelligent I/O buffer management
(known as fast buffers) [3].

Extensible operating systems let an application apply
certain customizations to tailor the behavior of the OS to
the needs of the application. The ExoKernel allows users
to describe the on-disk data structures and the methods
to implement them. ExoKernels provide application-
specific handlers [22] that facilitate downloading code
into the kernel to improve performance of networking
applications. SPIN allows type-safe Modula-3 code to
be downloaded and run in the kernel [1]. VINO allows
extensions written in C or C++ to be downloaded into
the kernel. It uses fault isolation via software to ensure
the safety of the extensions [17]. It also uses a safe com-
piler to validate memory accesses in the extension and
assure protection against self-modifying code. Riesen
discusses the use of compiler techniques to convert a C
program into intermediate low-level assembly code that
can be directly executed by an interpreter inside the ker-
nel [15]. Unfortunately, the work was neither officially
published nor completed, and results are not available
for comparison.

2.2 System Call Consolidation
Design The first step in finding system call patterns
was to collect logs of system calls. This was done using
a combination of strace and the system call auditing
support in Linux 2.6. Once the system call activity was
logged, we used a script to create a system call graph
[14] and searched for patterns. This is a weighted di-
rected graph with vertices representing system calls and
an edge between V1 and V2 having a weight equal to the
number of times system call V2 was invoked after V1.
Paths with large weights are likely to be good candidates
for consolidation.

We found several promising system call patterns,
including open-read-close, open-write-close,
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open-fstat, and readdir-stat. We implemented
several new system calls to measure the improvements.
The main savings for the first three combinations would
be the reduced number of context switches. The
readdirplus system call returns the names and status
information for all of the files in a directory. This com-
bines readdir with multiple stat calls. Here we save
on both context switches and data copies, because once
we get the file names we can directly use them to get the
stat information. This is a well-known optimization,
and was introduced in NFSv3 [2].

Evaluation We tested readdirplus on a 1.7GHz In-
tel Pentium 4 machine with 884MB of RAM running
Linux 2.6.10. We used an IDE disk formatted with
an Ext3 file system. We benchmarked readdirplus

against a program which did a readdir followed by
stat calls for each file. We increased the number of
files by powers of 10 from 10 to 100,000 and found that
the improvements were fairly consistent: elapsed, sys-
tem, and user times improved 60.6–63.8%, 55.7–59.3%,
and 82.8–84.0%, respectively.

To see how this might affect an average user’s work-
load, we logged the system calls on a system un-
der average interactive user load for approximately
15 minutes. We then calculated the expected sav-
ings if readdirplus were used. The total amount
of data transfered between user and kernel space was
51,807,520 bytes, and we estimate that if readdirplus
were used we would only transfer 32,250,041 bytes. We
would also do far fewer system calls—17,251 instead
of 171,975. This would translate to a savings of about
28.15 seconds per hour. Although this savings is small,
it is for an interactive workload. We expect that other
CPU-bound workloads, such as mail and Web servers,
would benefit more significantly from new system calls.

2.3 Compound System Calls
Design Often only a critical portion of the applica-
tion code suffers due to data movement across the user-
kernel boundary. Compound System Calls (Cosy) en-
codes the statements belonging to a bottleneck code seg-
ment along with their parameters to form a compound.
When executed, this compound is passed to the kernel,
which extracts the encoded statements and their argu-
ments and executes them one by one, avoiding extrane-
ous data copies. We designed Cosy to achieve maximum
performance with minimal user intervention and without
compromising security [13].

To facilitate the formation and execution of a com-
pound, Cosy provides three components: Cosy-GCC,
Cosy-Lib and the Cosy Kernel Extension. Users need
to identify the bottleneck code segments and mark
them with the Cosy specific constructs COSY START and
COSY END. This marked code is parsed and the state-

ments within the delimiters are encoded into the Cosy
language. We call this intermediate representation of the
marked code segment a compound. The Cosy system
uses two buffers for exchanging information. The first
is a compound buffer, where the compound is encoded.
The buffer is shared between the user and kernel space,
so the operations that are added by the user into the com-
pound are directly available to the Cosy Kernel Exten-
sion without any data copies. The second is a shared
buffer to facilitate zero-copying of data within system
calls and between user applications and the kernel.

The first component, Cosy-GCC, automates the te-
dious task of extracting Cosy operations out of a marked
C-code segment and packing them into a compound,
so the translation of marked C-code to an intermediate
representation is entirely transparent to the user. Cosy-
GCC also resolves dependencies among parameters of
the Cosy operations, and determines if the input param-
eter of the operations is the output of any of the previous
operations. We limited Cosy to the execution of only a
subset of C in the kernel. One of the main reasons is
safety. Another concern is that extending the language
further to support more features may not increase per-
formance because the overhead to decode a compound
increases with the complexity of the language. The sec-
ond component of Cosy, Cosy-Lib, provides utility func-
tions to create a compound. Statements in the user-
marked code segment are changed by the Cosy-GCC to
call these utility functions. The functioning of Cosy-
Lib and the internal structure of the compound buffer
are entirely transparent to the user. The final compo-
nent is the Cosy kernel extension, which is the heart of
the Cosy framework. It decodes each operation within a
compound and then executes each operation in turn.

The system call invocation by the Cosy kernel mod-
ule is the same as a normal process and hence all the
necessary checks are performed. However, when exe-
cuting a user-supplied function, more safety precautions
are needed. Cosy uses hardware and software checks
provided by the underlying architecture and the operat-
ing system to do this efficiently. Two of the safety fea-
tures are a preemptive kernel to avoid infinite loops and
x86 segmentation to protect kernel memory.

To remove the possibility of infinite loops in the ker-
nel, we use a preemptive kernel that checks the running
time of a Cosy process inside the kernel every time it is
scheduled out. If this time has exceeded the maximum
allowed kernel time then the process is terminated.

Cosy supports two approaches to protect kernel mem-
ory. The first approach is to put the entire user function
in an isolated segment but at the same privilege level.
The static and dynamic needs of such a function are sat-
isfied using memory belonging to the same isolated seg-
ment. This approach assures maximum security, as any
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reference outside the isolated segment generates a pro-
tection fault. Also, if we use two non-overlapping seg-
ments for function code and function data, concerns due
to self-modifying code vanish automatically. However,
to invoke a function in a different segment involves over-
head. The second approach uses a combination of static
and dynamic methods to ensure safety. In this approach
we restrict our checks to only those that protect against
malicious memory references. This is achieved by iso-
lating the function data from the function code by plac-
ing the function data in its own segment, while leaving
the function code in the same segment as the kernel. This
approach involves no additional runtime overhead while
calling such a function, making it very efficient. How-
ever, this approach has two limitations: it provides little
protection against self modifying code and is also vul-
nerable to hand-crafted user functions that are not com-
piled using Cosy-GCC.

Evaluation We have prototyped the Cosy system in
Linux and evaluated it under a variety of workloads
[13]. Our micro-benchmarks show that individual sys-
tem calls are sped up by 40–90% for common CPU-
bound user applications. Moreover, we modified pop-
ular user applications that exhibit sequential or random
access patterns (e.g., a database) to use Cosy. For CPU
bound applications, with very minimal code changes, we
achieved a performance speedup of up to 20–80% over
that of unmodified versions of these applications.

2.4 Status and Future Work

In the future, we would like to modify Cosy to automate
the job of deciding which code should be moved to the
kernel using profiling. In addition, we would like to cre-
ate the option of executing unmodified Unix/C programs
in kernel mode. The major hurdles in achieving this goal
are safety concerns.

We plan to explore heuristic approaches to authenti-
cate untrusted code. The behavior of untrusted code will
be observed for some specific time period and once the
untrusted code is considered safe, the security checks
will be dynamically turned off. This will allow us
to address the current safety limitations involving self-
modifying and hand-crafted user-supplied functions.

To extend the performance gains achieved by Cosy,
we are designing an I/O-aware version of Cosy. We are
exploring various smart-disk technologies [19] and typ-
ical disk access patterns to make Cosy I/O conscious.

We will continue to analyze system call patterns on
machines being used for various purposes, and imple-
ment new system call suites that cater to their workloads.
This way, an administrator can choose to use those sys-
tem calls which are tailored to applications such as mail
servers or Web servers.

3 Runtime Validation of Kernel Code

Programmers make mistakes, and C semantics leave am-
ple opportunity for introducing memory errors. This
problem becomes all the more acute when program-
ming inside the kernel as a small memory-access bug
could crash the entire system. Runtime bounds check-
ing through hardware is an efficient method of detecting
program bugs. We have developed such a system called
Kefence. KGCC, which is a software based approach
provides more comprehensive checking.

While runtime bounds-checking is an effective tech-
nique to verify properties specific to C language se-
mantics, kernel programmers frequently want to verify
higher-level properties stated in terms of program se-
mantics rather than language semantics. In the kernel,
there are many properties we would like to verify: spin-
locks that are locked are later unlocked, reference coun-
ters are incremented and decremented symmetrically, in-
terrupts that are disabled are later re-enabled. To allow
for checking of these, we have developed an event mon-
itoring infrastructure with support for on-line analysis in
the kernel and in user space, as well as logging for later
analysis.

3.1 Related Work

Validation of operating systems has historically been
performed using techniques in the following areas: static
checking, verification, compiler assistance, and external
runtime testing.

Dynamic checking, as employed in Bounds-Checking
GCC (BCC) [5] and other systems, is an example of
compiler–assisted verification. In this case, it is used
to insert runtime checks for memory corruption such as
buffer overflows in C [12].

Electric Fence uses a system’s virtual memory hard-
ware to place an inaccessible memory page immediately
after (or, at the user’s option, before) each allocated
memory area. When software reads to or writes from
this page, the hardware issues a segmentation fault, stop-
ping the program at the offending instruction. It is then
easy to find the statement in the C source using a debug-
ger. Memory that has been released by free is made
similarly inaccessible.

Wahbe et al. use software fault isolation [21] to run
applications written in any language securely in the ker-
nel. They use binary rewriting to add explicit checks to
verify the memory accesses and branch addresses.

Tracing, a special case of event monitoring, has been
extensively used to analyze the behavior of applications
as they interact with system APIs. Tracing involves
recording events in a log file, and using that file for later
analysis. This has been done for file systems [10] and
network applications [8].
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Profiling has been used to find bottlenecks in ap-
plication performance. Counters keep track of how
frequently applications’ basic blocks are executed. A
derivative of this technique, kernel profiling, is a form of
on-line monitoring which gathers unified statistics about
system behavior [20]. Profiling based on logs has also
been used to monitor system performance in distributed
applications [4].

3.2 Kefence
Design Kefence is designed to detect memory buffer
overflows at the hardware level. Kefence aligns mem-
ory buffers allocated in the kernel virtual address space
(using vmalloc) to page boundaries. The kernel’s
vmalloc function allocates one or several pages for
each request, facilitating this alignment. A guardian
page table entry (PTE) is added adjacent to each buffer
so that whenever a buffer overflow occurs, the guardian
PTE is accessed. The guardian PTE has read and write
permissions disabled; hence, accessing it causes a page
fault. The page fault handler of the Linux kernel is mod-
ified so that whenever there is an access to a guardian
PTE, it reports a buffer overflow.

Exact details about the context and location of buffer
overflows are logged through syslog. The modified page
fault handler can be configured to perform various ad-
ditional tasks. When security is critical, Kefence can be
configured to crash the module upon a memory overflow,
thereby preventing further malicious operations. The
system administrator can look at the logs to determine
the location of overflow. If debugging is more important,
Kefence can be configured to just log the buffer over-
flow without terminating the module. We implemented
this by auto-mapping a read-only or read-write page to
the guardian PTE whenever there is an overflow. This
way the code which caused the overflow can either be
allowed to write or to just read the out-of-bounds mem-
ory locations. Since the logs contain full information
about the location and the code which caused the over-
flow, buffer overflows in kernel code can be diagnosed
easily. Kefence can do this in real time, making it suit-
able for security critical applications.

Since Kefence can only protect virtually-mapped
buffers, those allocated using kmalloc are not pro-
tected. Therefore, to add bounds checking to a kernel
module, one must use vmalloc instead of kmalloc for
memory allocations. We have modified Linux header
files in such a way that this replacement is done auto-
matically if a special compiler flag is set.

Using vmalloc consumes more virtual memory,
since it allocates at least a page for each memory alloca-
tion. This is partly mitigated by the fact that modern 64-
bit architectures make the address space a virtually inex-
haustible resource. However, replacement of kmallocs

with vmallocs results in extra consumption of physi-
cal memory because the memory is allocated in units of
pages. To speed up the default vfree function we have
added a hash table to store the information about virtual
memory buffers. Since the alignment of buffers to page
boundaries can be done either at the beginning or at the
end, Kefence cannot detect buffer overflows and under-
flows simultaneously, unless the allocation is in multi-
ples of the page size. While this is a common case in-
side the kernel, we have found overflow protection to be
sufficient in most other cases.

Evaluation To evaluate the performance of Kefence,
we instrumented a stackable file system [23] called
Wrapfs. Wrapfs is a wrapper file system that just
redirects file system calls to a lower-level file system.
The vanilla Wrapfs uses kmalloc for allocation. Each
Wrapfs object (inode, file, etc.) contains a private data
field which gets dynamically allocated. In addition to
this, temporary page buffers and strings containing file
names are also allocated dynamically. We mounted
Wrapfs on top of a regular Ext2 file system with a 7,200
RPM IDE disk to conduct our tests. In the instrumented
version of Wrapfs, we used vmalloc for all memory
allocations so that we could exercise Kefence for all dy-
namically allocated buffers.

We compiled the Am-utils [11] package over Wrapfs
and compared the time overhead of the instrumented ver-
sion of Wrapfs with vanilla Wrapfs. The instrumented
version of Wrapfs had an overhead of 1.4% elapsed time
over normal Wrapfs. This overhead is due to two main
causes. First, vmalloc/vfree functions are slower than
kmalloc/kfree functions. Second, allocating an entire
page for each memory buffer increases TLB contention.
We found that the maximum number of outstanding al-
located pages during the compilation of Am-utils over
the instrumented version of Wrapfs was 2,085 and the
average size of each memory allocation was 80 bytes.
We conclude that Kefence performs well for normal user
workloads. However, memory-intensive code may ex-
haust virtual or physical memory.

3.3 Event Monitoring
Design When designing the event monitoring frame-
work, we wanted it to be flexible enough to allow for
instrumentation of any part of the kernel. This dictated
that it should have two main properties: generality and
performance sensitivity. For generality, the framework
should make as few assumptions as possible about the
events that are being monitored. This should be re-
flected both in a simple and generic API, and also in
the non-intrusiveness of the code (e.g., the code should
not block because some portions of the kernel cannot be
preempted). For performance sensitivity, the program-
mer ought to be able to insert checks for frequent events
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directly into the kernel, as well as being able to monitor
infrequently-occurring events easily in user space.

Instrumented code

log_event()

Event dispatch

callbacks

On−line monitorLogger

libkernevents

Userspace toolbuffer
Ring

Figure 1: Event monitor structure

Figure 1 shows the event monitor’s internal structure.
The log event call invokes an event dispatcher, which
in turn invokes a set of callbacks. When high perfor-
mance is needed, an event monitor should be developed
as a kernel module and register a callback with the dis-
patcher.

Kernel-space on-line event monitors are invoked syn-
chronously via their callbacks; user-space event moni-
tors receive events through a character device interface
to a lock-free ring buffer. Because the ring buffer is lock-
free, we can instrument code that is invoked during inter-
rupt handlers without fear that the interrupt handler will
block, which makes the code more general. We have
been able to instrument scheduler and interrupt handler
code safely using this module. User-space applications
can link with libkernevents to copy log entries in
bulk from the kernel and then read them one by one.

Each event is recorded by a structure that contains a
void * that references the object affected by the event
(e.g., this field can be used to extract the current value
of a reference counter); an integer that encodes the type
of event (e.g., increment or decrement for a reference
counter); and the source file and line number that trig-
gered the event. This structure has been designed to min-
imize the size of individual log entries while providing
sufficient generality to allow most pertinent information
to be recorded.

Evaluation We tested our framework under the Post-
Mark benchmark. The test system was a P4 1.7GHz
CPU with 884MB RAM and a Western Digital Caviar
20GB hard drive, under Linux 2.6.9. For the logging test
(see below) we used a Quantum Atlas 15K SCSI drive
on an Adaptec 39160D SCSI adapter to hold log data.

We ran the control test on a vanilla 2.6.9 kernel. We
then added instrumentation for the dentry cache lock,
dcache lock, which prevents race conditions in file-
system name-space operations such as renames. During

our benchmark, this lock was hit an average of 8,805
times a second; the benchmark ran for an average of 85.4
seconds. Adding the event dispatcher and ring buffer re-
sulted in a 3.9% overhead; running a user-space logger
built around librefcounts in parallel with PostMark
increased the overhead to 103%.

Running a user-space program that acts like the logger
but does not write to disk still gave a 61% overhead, and
system time was effectively constant for all runs, regard-
less of instrumentation. Hence the inefficiencies did not
arise from the kernel infrastructure. We believe that the
overhead from the user-space logger is due to inefficien-
cies in the user-kernel interface; in our current prototype,
librefcounts polls the character device continuously
rather than using blocking reads.

3.4 KGCC
KGCC is a compilation framework that allows instru-
mentation of kernel code. This has many uses: it can
be used to perform runtime bounds checking, to moni-
tor object reference counts, and to profile kernel code.
KGCC is derived from Jones and Kelly’s bounds check-
ing patch to GCC, called BCC [5]. However, KGCC
extends on the functionality of BCC in several ways and
has broader scope. Because KGCC is based on GCC, it
can leverage GCC’s optimization and analysis features.

BCC BCC inserts checks into the code at compile time
to perform runtime bounds checking. All operations
that can potentially cause bounds violations, like pointer
arithmetic, string operations, memory copying, etc. are
preceded by checks. The checks are simply function
calls to the BCC runtime environment, which maintains
a map of currently allocated memory in a splay tree; the
tree is consulted before any memory operation. How-
ever, BCC fails to compile a majority of open-source C
programs [16]. This is partly due to bugs in BCC and
partly because it gets confused by the complicated cod-
ing style in these programs. While working towards a
kernel-ready BCC, we also created a more robust ver-
sion of BCC, fixing several serious bugs (e.g., several
problems with inline function calls and concurrency).

Out-of-bounds pointers One of the problems with
BCC is its mishandling of temporary out-of-bounds
pointers. C programs often generate temporary ad-
dresses that are invalid but are needed as part of a larger
computation. For example, in the expression ptr+i-j,
where ptr is a pointer, and i and j are integers, it is
possible for ptr+i to be outside the memory area of
the object pointed to by ptr even though the whole ex-
pression on evaluation does translate to a valid address.
BCC flags an error for such temporary out-of-bounds ad-
dresses, which is undesirable.

Though replacing invalid addresses with references
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to external table entries suppresses some errors and is
one possible solution [16], it introduces problems when
the replacement is passed to code that was not compiled
with BCC. Our solution is based on the concept of peers.
Whenever an out-of-bounds address is created by arith-
metic on an object O, we insert a special out-of-bounds
(OOB) object at the new address into the address map,
and make it a peer of object O. Our KGCC runtime
permits only pointer arithmetic on OOB objects, which
can either generate another peer or return to O’s bounds.
Our approach handles out-of-bounds pointers without
suffering from the problems of the replacement-based
approach.

Porting BCC to the kernel As we modified BCC
to support the Linux kernel, we dealt with several is-
sues relating to symbols and the semantics of the ker-
nel’s C runtime environment and segmentation. We also
made modifications to the kernel and module initializa-
tion codes, and added support for multi-threading and
stack management.

KGCC performance Instrumented kernel compo-
nents suffer from two problems. First, instrumentation
imposes memory overhead, which is undesirable since
kernel memory is frequently direct-mapped. A program
fully compiled with all the default checks in BCC could
be up to 15 to 20 times larger than when compiled with
GCC. While the BCC runtime adds a small fixed-size
overhead, the bulk of the additional code is from thou-
sands of individual checks. Second, instrumented code
usually runs slower, because it must execute additional
instructions to track and validate accesses. KGCC han-
dles these two problems in a uniform way.

During compilation, KGCC employs heuristics to
eliminate unnecessary checks. For example, KGCC
does not check stack objects whose addresses are not
taken at any point in the code. The CCured project em-
ploys a more comprehensive approach to remove unnec-
essary checks [9]; we plan to integrate it with KGCC.
Another technique, common subexpression elimination,
allowed us to reduce the number of checks inserted by
more than half for typical kernel code. KGCC also
employs other optimizations like argument packing for
checking of function calls, mechanisms to reduce and lo-
calize instruction cache footprint, and trading space for
performance by caching more state in the KGCC library
in order to reduce communication with the module.

Evaluation We compared the performance of a
KGCC-compiled Reiserfs module to a vanilla GCC-
compiled module on Linux 2.6.7. We ran a CPU-
intensive benchmark, an Am-utils compile. The system
time for KGCC-compiled Reiserfs was 33% greater than
vanilla GCC, while the elapsed time was 20% greater.
We also ran the I/O-intensive benchmark PostMark [6].

In this case, the system time was 14 times greater for
KGCC-compiled Reiserfs while the elapsed time was 3
times greater.

3.5 Status and Future Work
Kefence We currently have a working implementation
of Kefence for the Intel 386 platform. Because convert-
ing all kmalloc calls to vmalloc calls consumes more
memory, we are investigating methods to dynamically
decide which memory should be protected at runtime.

Event monitoring We used our event monitor to in-
strument a variety of kernel components with acceptable
overheads. We intend to develop on-line, in-kernel mon-
itors for reference counters, spinlocks, and semaphores,
as well as tools that allow for more in-depth analysis of
performance bottlenecks related to these objects.

KGCC KGCC currently stores the address map of al-
located objects in a splay tree, which brings the most
recently accessed node to the top during each operation.
This results in nearly optimal performance when there
is reference locality. However, when multiple threads
make use of the same splay tree, the splay tree is no
longer as efficient, because different threads have less
locality. We are currently investigating data structures
better suited for multi-threaded code.

There are two techniques we intend to apply to the
entire KGCC framework: selective instrumentation and
dynamic deinstrumentation. First, we intend to make the
compiler capable of inserting instrumentation based on
rules such as “instrument every operation on an inode’s
reference count.” Second, as code paths execute safely
more times and more often, one can state with greater
confidence that they are correct. We intend to imple-
ment instrumentation that can be deactivated when it has
executed a sufficient number of times, reclaiming per-
formance quickly as the confidence level for frequently-
executed code becomes acceptable.

As part of the implementation of these techniques,
we plan to research and develop several two new tech-
nologies for integration into KGCC. First, we plan to
develop a language that specifies code patterns that the
KGCC compiler can then recognize and instrument, in
the spirit of aspect-oriented programming. Expressions
in this language would match patterns in a parsed and
type-checked version of the kernel’s source code. This
would eliminate tedious and error-prone manual instru-
mentation. Second, we plan to develop a means for di-
rect, code-level modification of an executable, like the
Linux kernel, at run-time. A binary would be augmented
with its parse tree and compiler-level intermediate rep-
resentation (IR). The IR would contain pointers into the
binary’s text segment, which would be updated as the
binary is converted into an executing image at runtime.
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New code could be inserted by using the existing parse
tree and symbol tables to convert it to IR, then compil-
ing that IR to binary code and modifying the appropriate
sections of the program’s text segment.

4 Conclusions
We have shown that significant performance improve-
ments of user applications are possible by reducing the
number of context switches and data copies needed. Ad-
ditionally, we have provided tools for ensuring that these
complex operations, and indeed any code inserted into
the Linux kernel, are safe.

Our work on system call consolidation has provided
secure, efficient replacements for commonly-used se-
quences of system calls, improving their performance by
up to 63%. For operations that are performance-critical
but application-specific, we have provided a mechanism,
Cosy, to allow an application to load and run code di-
rectly in the kernel, accelerating them by up to 90%.

In terms of safety, our work on Kefence combats
memory errors, disabling code before it overwrites other
kernel data. The KGCC compiler embeds checks into
kernel code, ensuring that no pointers are dereferenced
if they point outside safe areas. Finally, our event moni-
toring framework allows programmers to verify that ker-
nel code adheres to high-level safety rules in its interac-
tions with kernel objects like locks and reference counts.
We are currently devising mechanisms to disable checks
when they have executed enough times.

Our research has made it easier to run user-space code
in the kernel, and to monitor it for safety. As our research
progresses, we believe that the distinction between user
and kernel code, both in terms of performance and ease
of development, will gradually disappear.
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