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Abstract
Operating systems are complex and their behavior de-

pends on many factors. Source code, if available, does
not directly help one to understand the OS’s behavior,
as the behavior depends on actual workloads and ex-
ternal inputs. Runtime profiling is a key technique to
prove new concepts, debug problems, and optimize per-
formance. Unfortunately, existing profiling methods are
lacking in important areas—they do not provide enough
information about the OS’s behavior, they require OS
modification and therefore are not portable, or they in-
cur high overheads thus perturbing the profiled OS.

We developed OSprof: a versatile, portable, and ef-
ficient OS profiling method based on latency distribu-
tions analysis. OSprof automatically selects important
profiles for subsequent visual analysis. We have demon-
strated that a suitable workload can be used to profile vir-
tually any OS component. OSprof is portable because it
can intercept operations and measure OS behavior from
user-level or from inside the kernel without requiring
source code. OSprof has typical CPU time overheads
below 4%. In this paper we describe our techniques and
demonstrate their usefulness through a series of profiles
conducted on Linux, FreeBSD, and Windows, includ-
ing client/server scenarios. We discovered and inves-
tigated a number of interesting interactions, including
scheduler behavior, multi-modal I/O distributions, and
a previously unknown lock contention, which we fixed.

1 Introduction
Profiling is a standard method to investigate and tune the
operation of any complicated software component. Even
the execution of one single-threaded user-level program
is hardly predictable because of underlying hardware be-
havior. For example, branch prediction and cache behav-
ior can easily change the program execution time by an
order of magnitude. Moreover, there are a variety of pos-
sible external input patterns, and processes compete with
each other for shared resources in multi-tasking environ-
ments. Therefore, only runtime profiling can clarify the
actual system behavior even if the source code is avail-
able. At first glance, it seems that observing computer
software and hardware behavior should not be difficult
because it can be instrumented. However, profiling has
several contradicting requirements: versatility, portabil-
ity, and low overheads.

A versatile OS profile should contain information
about the interactions between OS components and al-
low correlation of related information that was captured
at different levels of abstraction. For example, a file sys-
tem operates on files, whereas a hard disk driver oper-
ates on data blocks. However, the operation and perfor-
mance of file systems and drivers depends on their com-
plex interactions; contention on semaphores can change
the disk’s I/O patterns, while a file system’s on-disk for-
mat dramatically changes its I/O behavior. This diffi-
culty results in existing OS profiling tools that are hardly
portable because they depend on a particular OS and
hardware architecture. In addition, profilers for new ker-
nels are often not available because existing profilers
have to be ported to each new OS version. To minimize
overheads, several hardware components provide profil-
ing help. For example, modern CPUs maintain statis-
tics about their operation [5]. However, only the OS
can correlate this information with higher level infor-
mation, such as the corresponding process. Therefore,
some CPU time overheads are inevitable. To minimize
these overheads, existing profilers provide limited infor-
mation, can only profile specific types of activity, and
rely on kernel instrumentation.

We developed a gray-box OS profiling method called
OSprof. In an OS, requests arrive via system calls and
network requests. The latency of these requests contains
information about related CPU time, rescheduling, lock
and semaphore contentions, and I/O delays. Capturing
latency is fast and easy. However, the total latency in-
cludes a mix of many latencies contributed by different
execution paths and is therefore difficult to analyze. Pro-
cess preemption complicates this problem further. All
existing projects that use latency as a performance met-
ric use some simplistic assumptions applicable only in
particular cases. Some authors assume that there is only
one source of latency and characterize it using the av-
erage latency value [11, 12, 17, 30]. Others use prior
knowledge of the latencies’ sources to classify the laten-
cies into several groups [3, 7, 27]. Other past attempts
to analyze latencies more generally just look for distri-
bution changes to detect anomalies [9]. Our profiling
method allows latency investigation in the general case.

We compile the distributions of latencies for each OS
operation, sort them into buckets at runtime, and later
process the accumulated results. This allows us to ef-
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ficiently capture small amounts of data that embody de-
tailed information about many aspects of internal OS be-
havior. Different OS internal activities create different
peaks on the collected distributions. The resulting infor-
mation can be readily understood in a graphical form,
aided by post-processing tools.

We created user-level profilers for POSIX-compliant
OSs and kernel-level profilers for Linux and Windows,
to profile OS activity for both local and remote comput-
ers. These tools have CPU time overheads below 4%.
We used these profilers to investigate internal OS behav-
ior under Linux, FreeBSD, and Windows. Under Linux,
we discovered and characterized several semaphore and
I/O contentions; source code availability allowed us to
verify our conclusions and fix the problems. Under Win-
dows, we observed internal lock contentions even with-
out access to source code; we also discovered a number
of harmful I/O patterns, including some for networked
file systems.

The OSprof method is a general profiling and visual-
ization technique that can be applied to a broad range of
problems. Nevertheless, it requires skill to select proper
workloads suitable for particular profiling goals. In this
paper we describe several ways to select workloads and
analyze corresponding profiles.

The rest of this paper is organized as follows. We de-
scribe prior work in Section 2. Section 3 describes our
profiling method and provides some analysis of its ap-
plicability and limitations. Section 4 describes our im-
plementation. We evaluate our system in Section 5. In
Section 6 we present several usage scenarios and analyze
profiles of several real-world file systems. We conclude
in Section 7.

2 Background
The de facto standard of CPU-related code execution
profiling is program counter sampling. Unix prof [4] in-
struments source code at function entry and exit points.
An instrumented binary’s program counter is sampled
at fixed time intervals. The resulting samples are used
to construct histograms with the number of individual
functions invoked and their average execution times.
Gprof [15] additionally records information about the
callers of individual functions, which allows it to con-
struct call graphs. Gprof was successfully used for ker-
nel profiling in the 1980s [23]. However, the instru-
mented kernels had a 20% increase in code size and an
execution time overhead of up to 25%. Kernprof [33]
uses a combination of PC sampling and kernel hooks
to build profiles and call graphs. Kernprof interfaces
with the Linux scheduler to measure the amount of
time that a kernel function spent sleeping in the pro-
file (e.g., to perform I/O). Unfortunately, Kernprof re-
quires a patch to both the kernel and the compiler, and

overheads of 15% were reported. More detailed pro-
files with granularity as small as a single code line can
be collected using tcov [34]. Most modern CPUs con-
tain special hardware counters for use by profilers. The
hardware counters allow correlation of profiled code ex-
ecution, CPU cache states, branch prediction functional-
ity, and ordinary CPU clock counts [2, 5]. Counter over-
flow events generate a non-maskable interrupt, allowing
Oprofile [21] to sample events even inside device drivers
(with overheads below 8%). Overall, such profilers are
less versatile, capturing only CPU-related information.

There are a number of profilers for other aspects of OS
behavior such as lock contention [6, 26]. They replace
the standard lock-related kernel functions with instru-
mented ones. This instrumentation is costly: Lockmeter
adds 20% system time overhead. Other specialized tools
can profile memory usage, leaks, and caches [32].

Fewer and less developed tools are available to pro-
file file system performance, which is highly dependent
on the workload. Disk operations include mechanical
latencies to position the head. The longest operation is
seeking, or moving the head from one track to another.
Therefore, file systems are designed to avoid seeks [24,
29]. Unfortunately, modern hard drives expose little
information about the drive’s internal data placement.
The OS generally assumes that blocks with close logi-
cal block numbers are also physically close to each other
on the disk. Only the disk drive itself can schedule the
requests in an optimal way, and only the disk drive has
detailed information about its internal operations. The
Linux kernel optionally maintains statistics about the
block-device I/O operations and makes those available
through the /proc file system, yet little information is
reported about timing.

Network packet sniffers capture traffic useful for sys-
tem and protocol analysis [13]. Their problems are sim-
ilar to those of hard disk profilers: both the client and
server often perform additional processing that is not
captured in the trace: searching caches, allocating ob-
jects, reordering requests, and more.

Latency contains important information and can be
easily collected, but it cannot be easily analyzed because
it likely contains a mix of latencies of different execu-
tion paths. Several profilers have used a simple assump-
tion that there is one dominant latency contributor that
can be characterized by the average latency [1, 11, 17].
This simple assumption allowed one to profile interrupts
even on an idle system [14]. DeBox and LRP investi-
gate average latency changes over time and their corre-
lation with other system parameters [12, 30]. Chen and
others moved one step further and observed changes in
the distribution of latency over time and their correla-
tion with software versions to detect possible problems
in network services [9]. Prior knowledge of the under-
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lying I/O characteristics and file system layouts allows
categorization of runtime I/O requests based on their la-
tency [3, 7, 27, 28].

There are several methods for integrating profiling
into code. The most popular is direct source code
modification because it imposes minimal overhead and
is usually simple. For example, tracking lock con-
tentions, page faults, or I/O activity usually requires just
a few modifications to the kernel source code [6, 30].
If, however, every function requires profiling modifi-
cations, then a compiler-based approach may be more
suitable (e.g., the gcc -p facility). More sophisticated
approaches include runtime kernel code instrumentation
and layered call interception. Solaris DTrace provides a
comprehensive set of places in the kernel available for
runtime instrumentation [8]. Dynamic code instrumen-
tation is possible by inserting jump operations directly
into the binary [16]. Similarly, debugging registers on
modern CPUs can be used to instrument several code
addresses at once [10]. Finally, stackable file systems
may collect information about file system requests [37].
3 Profiler Design
OSs serve requests from applications whose workloads
generate different request patterns. Latencies of OS re-
quests consist of both CPU and wait times:

latency = tcpu + twait (1)

CPU time includes normal code execution time as well
as the time spent waiting on spinlocks:

tcpu =
∑

texec +
∑

tspinlock

Wait time is the time in which a process was not run-
ning on the CPU. It includes synchronous I/O time, time
spent waiting on semaphores, and time spent waiting for
other processes or interrupts that preempted the profiled
request:

twait =
∑

tI/O +
∑

tsem +
∑

tint +
∑

tpreempt

tpreempt is the time in which the process was waiting
because it ran out of its scheduling quantum and was
preempted. We will consider preemption in Section 3.3.
We begin by discussing the non-preemptive OS case.

Every pattern of requests corresponds to a set of
possible execution paths S. For example, a system
call that updates a semaphore-protected data structure
can have two paths: (1) if the semaphore is available
(latency1 = tcpu1

), or (2) if it has to wait on the
semaphore (latency2 = tcpu2

+ tsem).
In turn, each tj is a function with its own distribution.

We can generalize that the latencys of paths s ∈ S con-
sists of the sum of latencies of their components:

latencys =
∑

j

ts,j (2)

where j is the component, such as I/O of a particular
type, program execution-path time, or one of the spin-
locks or semaphores.

To find all tj ∈ T it is necessary to solve the system of
linear Equations 2, which is usually impossible because
‖T‖ ≥ ‖S‖ (there are usually fewer paths than time
components). Non-linear logarithmic filtering is a com-
mon technique used in physics and economics to select
only the major sum contributors [22]. We used latency
filtering to select the most important latency contributors
tmax and filter out the other latency components δ:

log(latency) = log(tmax + δ) ≈ log(tmax)

For example, for log2, even if δ is equal to tmax, the re-
sult will only change by 1. Most non-trivial workloads
can have multiple paths for the same operation (e.g.,
some requests may wait on a semaphore and some may
not). To observe multiple paths concurrently we store
logarithms of latencies into buckets. Thus, a bucket b

contains the number of requests whose latency satisfies:

b = blog
2

1

r
(latency)c ≈ br × log(tmax)c

A profile’s bucket density is proportional to the resolu-
tion r. For efficiency, we always used r = 1. However,
r = 2, for example, would double the profile resolu-
tion (bucket density) with a negligible increase in CPU
overheads and doubled (yet small overall) memory over-
heads.

Figure 1 shows an actual profile of the FreeBSD 6.0
clone operation called concurrently by four processes
on a dual-CPU SMP system. We used CPU cycles as a
time metric because it is the most precise and efficient
metric available at run-time. For reference, the labels
above the profile give the average buckets’ latency in
seconds. The y-axis shows the number of operations
whose latency falls into a given bucket (note that both
axes are logarithmic). In Figure 1, the two peaks cor-
respond to two paths of the clone operation: (1) the
left peak corresponds to a path without lock contention,
and (2) the right peak corresponds to a path with a lock
contention. Next, we will discuss how we collect and
analyze the captured profiles.
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Figure 1: A profile of FreeBSD 6.0 clone operations concur-
rently issued by four user processes on a dual-CPU SMP sys-
tem. The right peak corresponds to lock contention between the
processes. Note: both axes are logarithmic (x-axis is base 2,
y-axis is base 10).
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3.1 Profile Collection and Analysis
Let us consider the profile shown in Figure 1 in more
detail. We captured this profile entirely from the user
level. In addition to the profile shown in Figure 1, we
captured another profile (not shown here) with only a
single process calling the same clone function; we ob-
served that in that case there was only one (leftmost)
peak. Therefore, we can conclude that there is some
contention between processes inside of the clone func-
tion. In addition, we can derive information about (1) the
CPU time necessary to complete a clone request with
no contention (average latency in the leftmost peak) and
(2) the portion of the clone code that is executed while
a semaphore or a lock is acquired (average latency in the
leftmost peak times the ratio of elements in the right-
most and leftmost buckets). In general, we use several
methods to analyze profiles.

Profile preprocessing. A complete profile may consist
of dozens of profiles of individual operations. For exam-
ple, a user-mode program usually issues several system
calls, so a complete profile consists of several profiles of
individual system calls. If the goal of profiling is per-
formance optimization, then we usually start our anal-
ysis by selecting a subset of profiles that contribute the
most to the total latency. We designed automatic proce-
dures to (1) select profiles with operations that contribute
the most to the total latency; and (2) compare two pro-
files and evaluate their similarity. The latter technique
has two applications. First, it can be used to compare
all profiles in a complete set of profiles and select only
these profiles that are correlated. Second, it is useful to
compare two different complete sets of profiles and se-
lect only these pairs that differ substantially; this helps
developers narrow down the set of OS operations where
optimization efforts may be most beneficial. We have
adopted several methods from the fields of statistics and
visual analytics [31]. We further describe these methods
in Section 3.2 and evaluate them in Section 5.3.

Prior knowledge-based analysis. Many OS opera-
tions have characteristic times. For example, we know
that on our test machines, a context switch takes approx-
imately 56µs, a full stroke disk head seek takes approx-
imately 8ms, a full disk rotation takes approximately
4ms, the network latency between our test machines is
about 112µs, and the scheduling quantum is about 58ms.
Therefore, if some of the profiles have peaks close to
these times, then we can hypothesize right away that
they are related to the corresponding OS activity. For
any test setup, these and many other characteristic times
can be measured in advance by profiling simple work-
loads that are known to show peaks corresponding to
these times. It is common that some peaks analyzed
for one workload in one of the OS configurations can

be recognized later on new profiles captured under other
circumstances.

Differential profile analysis. While analyzing pro-
files, one usually makes a hypothesis about a potential
reason for a peak and tries to verify it by capturing a
different profile under different conditions. For exam-
ple, a lock contention should disappear if the workload
is generated by a single process. The same technique
of comparing profiles captured under modified condi-
tions (including OS code or configuration changes) can
be used if no hypothesis can be made. However, this
usually requires exploring and comparing more sets of
profiles. As we have already described in this section,
we have designed procedures to compare two different
sets of profiles automatically and select only those that
differ substantially. Section 3.2 discusses these profiles,
comparing procedures in more detail.

Layered profiling. It is usually possible to insert
latency-profiling layers inside the OS. Most kernels pro-
vide extension mechanisms that allow for the intercep-
tion and capture of information about internal requests.
Figure 2 shows such an infrastructure. The inserted lay-
ers directly profile requests that are not coming from the
user level (e.g., network requests). Comparison of the
profiles captured at different levels can make the identi-
fication of peaks easier and the measurements more pre-
cise. For example, the comparison of user-level and file-
system–level profiles helps isolate VFS behavior from
the behavior of lower file systems. Note that we do not
have to instrument every OS component. For example,
we will show later in this section that we can use file
system instrumentation to profile scheduler or timer in-
terrupt processing. Unlike specialized profilers, OSprof
does not require instrumentation mechanisms to be pro-
vided by an OS, but can use them if they are available.
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FS profiler FS profiler

NIC driverSCSI driver

NFSD

Virtual File System (VFS)

read()

sys_read()
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User Process
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Figure 2: Our infrastructure allows profiling at the user, file
system, and driver levels.
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Layered profiling can be extended even to the granu-
larity of a single function call. This way, one can capture
profiles for many functions even if these functions call
each other. To do so, one may instrument function en-
try and return points manually—for example, using the
gcc -p facility. Similarly, many file system operations
call each other. For example, the readdir operation of
Linux 2.6 Ext2 calls the readpage operation if direc-
tory information is not found in the cache. Therefore,
file-system–level profiling can also be considered to be
a kind of layered profiling.

Profile sampling. OSprof is capable of taking succes-
sive snapshots by using new sets of buckets to capture
latency at predefined time intervals. In this case we are
also comparing one set of profiles against another, as
they progress in time. This type of three-dimensional
profiling is useful when observing periodic interactions
or analyzing profiles generated by non-monotonic work-
load generators (e.g., a program compilation).

Direct profile and value correlation. If layered pro-
filing is used, it is possible to correlate peaks on the pro-
files directly with the internal OS state. To do this, we
first capture our standard latency profiles. Next, we sort
OS requests based on the peak they belong to, accord-
ing to their measured latency. We then store logarithmic
profiles of internal OS parameters in separate profiles for
separate peaks. In many cases, this allows us to corre-
late the values of internal OS variables directly with the
different peaks, thus helping to explain them.

We will illustrate all of the above profile analysis
methods in Section 6.

3.2 Automated Profile Analysis
We developed an automated profile analysis tool which
(1) sorts individual profiles of a complete profile accord-
ing to their total latencies; (2) compares two profiles and
calculates their degree of similarity; and (3) performs
these steps on two complete sets of profiles to automati-
cally select a small set of “interesting” profiles for man-
ual analysis.

The third step reflects our experience with using OS-
prof. It operates in three phases. First, it ignores any
profile pairs that have very similar total latencies, or
where the total latency or number of operations is very
small when compared to the rest of the profiles (the
threshold is configurable). This step alone greatly re-
duces the number of profiles a person would need to ana-
lyze. In the second phase, our tool examines the changes
between bins to identify individual peaks, and reports
differences in the number of peaks and their locations.
Third, we use one of several methods to rate the differ-
ence between the profiles.

Comparing two profiles. There are several methods
for comparing histograms where only bins with the
same index are matched. Some examples are the chi-
squared test, the Minkowski form distance [35], his-
togram intersection, and the Kullback-Leibler/Jeffrey di-
vergence [20]. The drawback of these algorithms is that
their results do not take factors such as distance into ac-
count because they report the differences between indi-
vidual bins rather than looking at the overall picture.

The Earth Mover’s Distance (EMD) is a cross-bin al-
gorithm and is commonly used in data visualization as
a goodness-of-fit test [31]. The idea is to view one his-
togram as a mass of earth, and the other as holes in the
ground (the histograms are normalized so that we have
exactly enough earth to fill the holes). The EMD value
is the least amount of work needed to fill the holes with
earth, where a unit of work is moving one unit by one
bin. This algorithm does not suffer from the problems
associated with the bin-by-bin and other cross-bin com-
parison methods, and is specifically designed for visual-
ization. It indeed outperformed the other algorithms.

We also used two simple comparison methods: the
normalized difference of total operations and of total la-
tency. The algorithms are evaluated in Section 5.3.

3.3 Multi-Process Profiles
Capturing latency is simple and fast. However, early
code-profiling tools rejected latency as a performance
metric, because in multitasking OSs a program can be
rescheduled at an arbitrary point in time, perturbing the
results. We show here that rescheduling can reveal infor-
mation about internal OS components such as the CPU
scheduler, I/O scheduler, hardware interrupts, and peri-
odic OS processes. Also, we will show conditions in
which their influence on profiles can be ignored.
Forcible preemption effects. Execution in the kernel
is different from execution in user space. Requests ex-
ecuted in the kernel usually perform limited amounts of
computation. Some kernels (e.g., Linux 2.4 and Free-
BSD 5.2) are non-preemptive and therefore a process
cannot be rescheduled (though it can voluntarily yield
the CPU, say, during an I/O operation or while waiting
on a semaphore). Let us consider a fully preemptive ker-
nel where a process can be rescheduled at any point in
time. A process can be preempted during the profiled
time interval only during its tcpu component. Let Q be
the quantum of time that a process is allowed to run by
the scheduler before it is preempted. A process is never
forcibly preempted if it explicitly yields the CPU before
running for the duration of Q. This is the case in most
of the practical scenarios that involve I/O or waiting on
semaphores (i.e., yielding the CPU). Let Y be the prob-
ability that a process yields during a request. The prob-
ability that a process does not yield the CPU during Q
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cycles is (1 − Y )

(

Q

tperiod

)

, where tperiod is the average
sum of user and system CPU times between requests.
If during Q cycles the process does not yield the CPU,
then it will be preempted within the profiled time inter-
val with probability tcpu

tperiod
. Thus, the probability that a

process is forcibly preempted while being profiled is:

Pr(fp) =
tcpu

tperiod
× (1 − Y )

(

Q

tperiod

)

(3)

Differential analysis of Equation 3 shows that the
function rapidly declines if tperiod � QY . Plugging
in our typical case numbers for times and 1% yield
rate (Y = 0.01, tcpu =

tperiod

2
= 210, Q = 226) we

get an extremely small forced preemption probability:
2.3 × 10−280.

Figure 3 shows two profiles of read operation issued
by two processes that were reading zero bytes of data
from a file under Linux 2.6.11. One of the profiles was
captured on a Linux kernel compiled with in-kernel pre-
emption enabled (black bars) and the other one is cap-
tured with the kernel compiled with in-kernel preemp-
tion disabled (white bars). For easier comparison, both
profiles are shown together. This workload has Y = 0
and therefore can produce measurable preemption ef-
fects if we generate a large enough number of requests.
We had to generate 2×108 requests to observe only 278
preempted requests in the 26th bucket. This is consistent
with our theory: the average latency of bucket b is equal
to tcpu = 3

2
2b, and the expected number of preempted

requests from bucket b is nb
tcpu

Q = nb

3

2
2

b

Q , where nb is
the number of elements in bucket b. Summing up the
expected number of preempted requests, we calculated
that the expected number of elements in the 26th bucket
is 388±33% for Linux. We have also verified our theory
for Windows XP and FreeBSD 6.0 on uniprocessor and
SMP systems. We conclude that preemption effects can
be ignored for all the profiles presented in this paper.

Profiles that contain a large number of requests also
show information about low-frequency events (e.g.,
hardware interrupts or background OS threads) even if
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Figure 3: Profile of a read operation that reads zero bytes of
data on a Linux 2.6.11 kernel compiled with in-kernel preemp-
tion enabled and the same kernel with preemption disabled.

these events perform a minimal amount of activity. Sev-
eral small peaks in Figure 3 correspond to such activity.
For example, on Linux the total duration of the profil-
ing process divided by the number of elements in bucket
13 is equal to 4ms, which suggests that this peak corre-
sponds to timer interrupt processing. Higher-resolution
profiles may help analyze these peaks.

Wait times at high CPU loads. We normally assume
that twait is defined by particular events such as I/O or
a wait on a semaphore. However, if the CPU is still
busy servicing another process after the twait time, then
the request’s latency will be longer than the original la-
tency in Equation 1. Such a profile will still be correct
because it will contain information about the affected
twait. However, it will be harder to analyze as it will
be shifted to the right; because the buckets are logarith-
mic, multiple peaks can become indistinguishable. For-
tunately, this can happen only if the sum of the CPU
times of all other processes is greater than twait.

3.4 Multi-CPU Profiles
There are two things one should keep in mind while pro-
filing multi-CPU systems.

Clock Skew. CPU clock counters on different CPUs
are usually not precisely synchronized. Therefore, the
counters difference will be added to the measured la-
tency if a process is preempted and rescheduled to a
different CPU. Our logarithmic filtering produces pro-
files that are insensitive to counter differences that are
less than the scheduling time. Fortunately, most systems
have small counter differences after they are powered up
(≈20ns). Also, it is possible to synchronize the counters
in software by writing to them concurrently. For exam-
ple, Linux synchronizes CPU clock counters at boot time
and achieves timing synchronization of ≈130ns.

Profile Locking. Bucket increment operations are not
atomic by default on most CPU architectures. This
means that if two threads attempt to update the same
bucket concurrently only one of them will succeed. A
naı̈ve solution would be to use atomic memory up-
dates (the lock prefix on i386). Unfortunately, this
can seriously affect profiler performance. Therefore, we
adopted two alternative solutions based on the number
of CPUs: (1) If the number of CPUs is small, the proba-
bility that two or more bucket writes happen at the same
time is small. Therefore, the number of missed profile
updates is small. For example, in the worst case scenario
for a dual-CPU system, we observed that less than 1%
of bucket updates were lost while two threads were con-
currently measuring latency of an empty function and
updating the same bucket. For real workloads this num-
ber is much smaller because the profiler updates differ-
ent buckets and the update frequency is smaller. There-
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fore, we use no locking on systems with few CPUs. (2)
The probability of concurrent updates grows rapidly as
the number of CPUs increases. On systems with many
CPUs we make each process or thread update its own
profile in memory. This prevents lost updates on sys-
tems with any number of CPUs.

3.5 Method Summary
Our profiling method reveals useful information about
many aspects of internal OS behavior. In general, profil-
ers can be used to investigate known performance prob-
lems that are seen in benchmarks or during normal use,
or to actively search for bottlenecks. We have used our
profiler successfully in both ways.

When searching for potential performance issues, we
found that a custom workload is useful to generate a pro-
file that highlights an interesting behavior. In general,
we start with simple workloads and devise more spe-
cific, focused workloads as the need arises. Workload
selection is a repetitive-refinement visualization process,
but we found that a small number of profiles tended to
be enough to reveal highly useful information. We de-
rived several formulas that allowed us to estimate the
effects of preemption. We showed that for typical work-
loads (moderate CPU use and small number of system
calls) preemption effects are negligible. Conversely, a
different class of workloads (lots of CPU time and a
large number of system calls) can expose preemption ef-
fects. This is useful when deriving the characteristics
of internal OS components such as the CPU scheduler,
I/O scheduler, and background interrupts and processes.
Such information cannot be easily collected using other
methods. While creating the workloads, one should keep
in mind that workloads generated by many active pro-
cesses can have high CPU loads and right-shift the la-
tency peaks associated with I/O or semaphore activity.
Fortunately, we found that just a few processes can al-
ready reveal most process-contention scenarios.

We do not require source code access, which enables
us to perform gray-box profiling. The resulting profiles
show which process or operation causes contention with
another operation. For example, the profiles do not show
which particular lock or semaphore is causing a slow-
down, because that information is specific to a particular
OS and therefore conflicts with our portability goal. For-
tunately, the level of detail one can extract with the OS-
prof profiles is sufficient in most cases. For example, as
we show in Section 6, the information we get is sufficient
to find out which particular semaphore or lock is prob-
lematic if the source code is available. However, if the
source code is not available one can still glean many de-
tails about a particular lock contention—enough to opti-
mize an OS component or application that does not use
the related lock directly.

When profiling from outside the kernel, OSprof does
not add overheads to the kernel, and therefore has min-
imal impact on the OS’s internal behavior. Moreover,
OSprof traces requests at the interface level and adds
small CPU-time overheads only on a per-request basis—
without adding any overhead for each internal event be-
ing profiled (e.g., taking a semaphore).

4 Implementation
We designed a fast and portable aggregate stats li-
brary that sorts and stores latency statistics in logarith-
mic buckets. Using that library, we created user-level,
file-system–level, and driver-level profilers for Linux,
FreeBSD, and Windows, as shown in Figure 2.

Instrumenting Linux 2.6.11 and FreeBSD 6.0 allowed
us to verify some of the results by examining the source
code. Instrumenting Windows XP allowed us to ob-
serve its internal behavior, which is not otherwise possi-
ble without access to the source code. We chose source
code instrumentation techniques for Linux and FreeBSD
for performance and portability reasons. We chose plug-
in or binary rewriting instrumentation for the Windows
profilers because source code is not currently available.

The aggregate stats library. This C library provides
routines to allocate and free statistics buffers, store re-
quest start times in context variables, calculate request
latencies, and store them in the appropriate bucket. We
use the CPU cycle counter (TSC on x86) to measure time
because it has a resolution of tens of nanoseconds, and
querying it uses a single instruction. The TSC register
is 64 bit wide and can count for a century without over-
flowing even for modern CPUs. To be consistent, we
store all time values in terms of CPU cycles.

POSIX user-level profilers. We designed our user-
level profilers with portability in mind. We directly in-
strumented the source code of several programs used to
generate test workloads in such a way that system calls
are replaced with macros that call our library functions
to retrieve the value of the CPU timer, execute the sys-
tem call, and then calculate the latency and store it in the
appropriate bucket. This way, the same programs can be
recompiled for other POSIX-compliant OSs and be used
for profiling immediately. Upon exit, the program prints
the collected profiles to the standard output.

Windows user-level profilers. To profile Windows
under workloads generated by arbitrary non-open-
sourced programs, we created a runtime system-call pro-
filer. It is implemented as a DLL and uses the Detours
library [16] to insert instrumentation functions for each
system call of interest. Detours can insert new instru-
mentation into arbitrary Win32 functions even during
program execution. It implements this by rewriting the
target function images. To produce a workload, we ran a
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struct file_operations ext2_dir_operations = {
read: generic_read_dir,
readdir: ext2_readdir,
ioctl: ext2_ioctl,
fsync: ext2_sync_file,

};

Figure 4: Ext2 directory operations. The kernel exports the
generic read dir function for use by many file systems.

program that executes the test application and injects the
system call profiler DLL into the test program’s address
space. On initialization, the profiler inserts instrumenta-
tion functions for the appropriate Windows system calls.

Linux and FreeBSD file-system–level profilers. We
chose source code instrumentation to insert latency mea-
surement code into existing Linux and FreeBSD file
systems because it is simple and adds minimal profil-
ing overheads. We implemented the profiling code as
a FiST [37] file system extension. Our automatic code
instrumentation system, FoSgen [18], parses this exten-
sion and applies it to file systems. It performs four steps:
(1) Scan all source files for VFS operation vectors. (2)
Scan all source files for operations found in the previous
step and insert latency calculation macros in the function
body; this also replaces calls to outside functions with
wrappers. (3) Include a header file to declare the latency
calculation macros in every C file that needs them. (4)
Create aggregate stats and /proc interface source
files and add them to the Makefile.

FoSgen assumes that the file system’s VFS operations
are defined within fixed operation vectors. In particular,
every VFS operation is a member of one of several data
structures (e.g., struct inode operations). These
data structures contain a list of operations and hard-
coded associated functions. For example, Figure 4
shows the definition of Ext2’s file operations for di-
rectories. FoSgen discovers implementations of all file
system operations and inserts FSPROF PRE(op) and
FSPROF POST(op) macros at their entry and return
points. For non-void functions of type f type, FoSgen
transforms statements of the form return foo(x) to:
{

f_type tmp_return_variable = foo(x);
FSPROF_POST(op);
return tmp_return_variable;

}

Often, file systems use generic functions ex-
ported by the kernel. For example, Ext2 uses the
generic read dir kernel function for its read oper-
ation, as shown in Figure 4. FoSgen creates wrapper
functions for such operations and instruments them to
measure the latency of external functions.

FoSgen consists of 607 lines of perl code. Despite
its simplicity, it successfully instrumented more than a
dozen Linux 2.4.24, 2.6.11, and FreeBSD 6.0 file sys-
tems we tried it on. Also, FoSgen instrumented nullfs

and Wrapfs [37]—stackable file systems that can be
mounted on top of other file systems to collect their la-
tency profiles.

In addition to FoSgen, we have also created a simpler
bash and sed script that can instrument Linux 2.4 and
2.6 file systems. The shell script contains 307 lines and
184 distinct sed expressions.

Windows file-system–level profilers. The Windows
kernel-mode profiler is implemented as a file system
filter driver [25] that stacks on top of local or remote
file systems. In Windows, an OS component called
the I/O Manager defines a standard framework for all
drivers that handle I/O. The majority of I/O requests to
file systems are represented by a structure called the I/O
Request Packet (IRP) that is received via entry points
provided by the file system. The type of an I/O re-
quest is identified by two IRP fields: MajorFunction and
MinorFunction. In certain cases, such as when accessing
cached data, the overhead associated with creating an
IRP dominates the cost of the entire operation, so Win-
dows supports an alternative mechanism called Fast I/O
to bypass intermediate layers. Our file system profiler
intercepts all IRPs and Fast I/O traffic that is destined to
local or remote file systems.

Driver-level profilers. In Linux, file system writes
and asynchronous I/O requests return immediately af-
ter scheduling the I/O request. Therefore, their la-
tency contains no information about the associated I/O
times. To detect this information, we instrumented a
SCSI device driver; to do so we added four calls to the
aggregate stats library. Windows provides a way to
create stackable device drivers, but we did not create one
because the file system layer profiler already captures la-
tencies of writes and asynchronous requests.

Representing results. We wrote several scripts to gen-
erate formatted text views and Gnuplot scripts to pro-
duce 2D and 3D plots. All the figures representing pro-
files in this paper were generated automatically. In ad-
dition, these scripts check the profiles for consistency.
aggregate stats maintains checksums of the number
of time measurements. For every operation, results in
all of the buckets are summed and then compared with
the checksums. This verification catches potential code
instrumentation errors.

Portability. Each of our instrumentation systems con-
sists of three parts: (1) the aggregate statistics library,
which is common to all instrumentation systems; (2) the
instrumentation hooks; and (3) a reporting infrastructure
to retrieve buckets and counts. Our aggregate statistics
library is 141 lines of C code, and only the instruction
to read the CPU cycle counter is architecture-specific.
In the Linux kernel, we used the /proc interface for
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reporting results, which consists of 163 lines. The in-
strumentation hooks for our Linux device driver used 10
lines. For user-space on Unix, our instrumentation and
reporting interface used 68 lines.

Our Windows filter driver was based on FileMon [36]
and totaled 5,262 lines, of which 273 were our own C
code and 63 were string constants. We also wrote a 229-
line user application to retrieve the profile from the ker-
nel. We used the Detours library [16] for the Windows
user-space profiling tool. We added 457 lines of C code
to intercept 112 functions, of which 337 lines are repet-
itive pre-operation and post-operation hooks.

In sum, our profiling system is fairly portable, with
less than 1,000 lines of code written for each of the
three OSs. The aggregate statistics library runs with-
out changes in four different environments: Unix appli-
cations, Windows applications, and the Unix and Win-
dows kernels. We developed an automatic instrumenta-
tion tool for Linux and FreeBSD file systems that could
be easily adapted for other Unix file systems.

5 Evaluation
We evaluated the overhead of our profiler using an in-
strumented Linux 2.6.11 Ext2 file system. We measured
memory usage, CPU cache usage, the latency added to
each profiled operation, and the overall execution time.
We chose to instrument a file system, instead of a pro-
gram, because a file system receives a larger number
of requests (due to the VFS calling multiple operations
for some system calls) and this demonstrates higher
overheads. Moreover, user-level profilers primarily add
overheads to user time. We conducted all our experi-
ments on a 1.7GHz Pentium 4 machine with 256KB of
CPU cache and 1GB of RAM. It uses an IDE system
disk, but the benchmarks ran on a dedicated Maxtor At-
las 15,000 RPM 18.4GB Ultra320 SCSI disk with an
Adaptec 29160 SCSI controller. We unmounted and re-
mounted all tested file systems before each benchmark
run. We also ran a program we wrote called chill that
forces the OS to evict unused objects from its caches by
allocating and dirtying as much memory as possible. We
ran each test at least ten times and used the Student-t dis-
tribution to compute the 95% confidence intervals for the
mean elapsed, system, user, and wait times. Wait time is
the elapsed time less CPU time and consists mostly of
I/O, but process scheduling can also affect it. In each
case, the half-widths of the confidence intervals were
less than 5% of the mean.

5.1 Memory Usage and Caches
We evaluated the memory and CPU cache overheads of
the file system profiler. The memory overhead consists
of three parts. First, there is some fixed overhead for the
aggregation functions. The initialization functions are

seldom used, so the only functions that affect caches are
the instrumentation and sorting functions which use 231
bytes. This is below 1% of cache size for all modern
CPUs. Second, each VFS operation has code added at
its entry and exit points. For all of the file systems we
tested, the code-size overhead was less than 9KB, which
is much smaller than the average memory size of mod-
ern computers. The third memory overhead comes from
storing profiling results in memory. A profile occupies
a fixed memory area. Its size depends on the number of
implemented file system operations and is usually less
than 1KB.

5.2 CPU Time Overheads
To measure the CPU-time overheads, we ran Postmark
v1.5 [19] on an unmodified and on an instrumented
Ext2. Postmark simulates the operation of electronic
mail servers. It performs a series of file system opera-
tions such as create, delete, append, and read. We con-
figured Postmark to use the default parameters, but we
increased the defaults to 20,000 files and 200,000 trans-
actions so that the working set is larger then OS caches
and so that I/O requests will reach the disk. This config-
uration runs long enough to reach a steady-state and it
sufficiently stresses the system. Overall, the benchmarks
showed that wait and user times are not affected by the
added code. The unmodified Ext2 used 18.3 seconds of
system time, or 16.8% of elapsed time. The instrumenta-
tion code increased system time by 0.73 seconds (4.0%).
As seen in Figure 5, there are three additional compo-
nents added: making function calls, reading the TSC
register, and storing the results in the correct buckets. To
understand the details of this per-operation overheads,
we created two additional file systems. The first con-
tains only empty profiling function bodies, to measure
the overhead of calling the profiling functions. Here,
the system time increase over Ext2 was 0.28 seconds
(1.5%). The second file system read the TSC register,
but did not include code to sort the information or store
it into buckets. Here, the system time increased by 0.36
seconds over Ext2 (2.0%). Therefore, 1.5% of system
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Figure 5: Profiled function components.
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time overheads were due to calling profiling functions,
0.5% were due to reading the TSC, and 2.0% were due
to sorting and storing profile information.

Not all of the overhead is included within the pro-
file results. Only the portion between the TSC regis-
ter reads is included in the profile, and therefore it de-
fines the minimum value possible to record in the buck-
ets. Assuming that an equal fraction of the TSC is read
before and after the operation is counted, the delay be-
tween the two reads is approximately equal to half of the
overhead imposed by the file system that only reads the
TSC register. We computed the average overhead to be
40 cycles per operation. This result is confirmed by the
fact that the smallest values we observed in any profile
were always in the 5th bucket. The 40-cycle overhead is
well below most operation latencies, and can influence
only the fastest of VFS operations that perform very lit-
tle work. For example, sync page is called to write a
dirty page to disk, but it returns immediately if the page
is not dirty. In the latter case its latency is at least 80
cycles long.

5.3 Automated Profile Analysis Accuracy
We conducted an informal study to measure the accu-
racy of our automated analysis tool. Three graduate
students with twelve combined years of file system ex-
perience and six combined years of experience using
OSprof examined over 250 profile pairs to determine
which profiles contained important information (those
which should be reported by an automated tool). We
define a false positive as the tool reporting a profile that
we did not consider to be important, and a false nega-
tive as the tool failing to report an important profile. We
also sorted the same 250 profile pairs using our auto-
mated methods described in Section 3.2. The Chi-square
method produced 5% of false positives and negatives;
the total operation counts method produced 4%; the total
latency method—3%; and the Earth Mover’s Distance
method had the smallest false classification rate of 2%.

6 Example File System Profiles
In this section we describe a few interesting examples
that illustrate our method of analyzing OS behavior. We
also illustrate our profile analysis methods described in
Section 3.1. To conserve space, we concentrate on pro-
files of disk-based file systems and network file sys-
tems. Such profiles tend to contain a wide spectrum
of events. We conducted all experiments on the same
hardware setup as described in Section 5. Unless noted
otherwise, we profiled a vanilla Linux 2.6.11 kernel and
Windows XP SP2. All profiles presented in this section
are from the file-system level except Figure 10.

We ran two workloads to capture the example profiles:
a grep and a random-read on a number of file systems.

The grep workload was generated by the grep utility
that was recursively reading through all of the files in
the Linux 2.6.11 kernel source tree. The random-read
workload was generated by two processes that were ran-
domly reading the same file using direct I/O mode. In
particular, these processes were changing the file pointer
position to a random value and reading 512 bytes of data
at that position. Of note is that we did not have to use
many workloads to reveal a lot of new and useful infor-
mation. After capturing just a few profiles, we were able
to spot several problematic patterns.

6.1 Analyzing Disk Seeks
We ran the random-read workload generated by one
and two processes. The automated analysis script alerted
us to significant discrepancies between the profiles of
the llseek operations. As shown in Figure 6, there
are three interesting facts about the reported profiles that
indicated process contention. First, the behavior did
not exist when running with one process. Second, the
llseek operation was among the main latency contrib-
utors. This was noted as a strange behavior because the
operation only updates the current file pointer position
stored in the file data structure. Third, the right-most
peak was strikingly similar with the read operation. Al-
though these facts indicate that the llseek operation of
one process competes with the read operation of the
other process, llseek updates a per-process data struc-
ture, so we were unsure as to why that would happen.

Upon investigation of the source code, we ver-
ified that the delays were indeed caused by the
i sem semaphore in the Linux-provided method
generic file llseek—a method which is used by
most of the Linux file systems including Ext2 and Ext3.
We observed that this contention happens 25% of the
time, even with just two processes randomly reading the
same file. We modified the kernel code to resolve this
issue as follows. In particular, we observed that to be
consistent with the semantics of other Linux VFS meth-
ods, we need only protect directory objects and not file
objects. The llseek profile captured on the modified
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kernel is shown at the bottom of Figure 6. As we can
see, our fix reduced the average time of the llseek from
400 cycles to 120 cycles (a 70% reduction). The im-
provement is compounded by the fact that all semaphore
and lock-related operations impose relatively high over-
heads even without contention, because the semaphore
function is called twice and its size is comparable to
llseek. Moreover, semaphore and lock accesses re-
quire either locking the whole memory bus or at least
purging the same cache line from all other processors,
which can hurt performance on SMP systems. (We sub-
mitted a small patch which fixes this problem and its de-
scription to the core Linux file system developers, who
agreed with our reasoning and conclusions.)

We ran the same workload on a Windows NTFS file
system and found no lock contention. This is because
keeping the current file position consistent is left to user-
level applications on Windows.

6.2 Analyzing File System Read Patterns
We now show how we analyzed various file system I/O
patterns under the grep workload. In this workload, we
use the grep utility to search recursively through the
Linux kernel sources for a nonexistent string. Most of
the peaks shown in the top profile of Figure 7 are com-
mon for all file system operations that require hard disk
accesses. Here we refer to the readdir operation peaks
by their order from left to right: first (buckets 6 and 7),
second (9–14), third (16 and 17), and fourth (18–23).
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Figure 7: Profiles of Linux 2.6.11 Ext2 readdir (top) and
readpage (bottom) operations captured for a single run of
grep -r on a Linux source tree.

First peak (buckets 6–7). From the profile of Figure 3
we already know that on Linux the peak in the 6th bucket
corresponds to a read of zero bytes of data or any other
similar operation that returns right away. The readdir
function returns directory entries in a buffer beginning
from the current position in the directory. This position
is automatically updated when reading and modifying
the directory and can also be set manually. If the current
position is past the end of the directory, readdir re-
turns immediately (this happens when a program repeat-
edly calls readdir until no more entries are returned).
Therefore, it seems likely that the first peak corresponds
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and the requests’ peaks in Figure 7.

to the reads past the end of directory. One way to ver-
ify our hypothesis would be to profile a workload that
issues readdir calls only after there are no more di-
rectory entries to read and then compares the resulting
profiles (differential analysis). However, we can demon-
strate our other method of profile analysis by directly
correlating peaks and variables.

To do so, we slightly modified our profiling macros:
instead of storing the latency in the buckets we (1) cal-
culated a readdir past EOF value for every readdir
call (readdir past EOF = 1 if the file pointer position
is greater or equal to the directory buffer size and is 0
otherwise); (2) if the latency of the current function ex-
ecution fell within the range of the first peak, a value
of the bucket corresponding to readdir past EOF
×1, 024 was incremented in one profile and in another
profile otherwise. The resulting profiles are shown in
Figure 8 and prove our hypothesis.

Second peak (buckets 9–14). The readdir operation
calls the readpage operation for pages not found in
the cache. The readpage profile is a part of the com-
plete grep workload profile and is shown on the bot-
tom in Figure 7. During the complete profile prepro-
cessing phase our automatic profiles analysis tool dis-
covered that the number of elements in the third and
fourth peaks is exactly equal to the number of elements
in the readpage profile. This immediately suggests
that the second peak corresponds to readdir requests
that were satisfied from the cache. Note that the la-
tency of readpage requests is small compared to re-
lated readdir requests. That is because readpage just
initiates the I/O and does not wait for its completion.

Third peak (buckets 16–17). The third and the fourth
peaks of the readdir operation correspond to disk I/O
requests. The third peak corresponds to the fastest I/O
requests possible. It does not correspond to I/O requests
that are still being read from the disk and thus may re-
quire disk rotations or even seeks. This is because the
shape of the third peak is sharp (recall that the Y scale
is logarithmic). Partially read data requests would have
to wait for partial disk rotations and thus would spread
to gradually merge with the fourth peak. Therefore, the
third peak corresponds to I/O requests satisfied from the
disk cache due to internal disk readahead.
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Fourth peak (buckets 18–23). We know that the
fourth peak corresponds to requests that may require
seeking with a disk head (track-to-track seek time for
our hard drive is 0.3ms; full stroke seek time is 8ms)
and waiting for the disk platter to rotate (full disk rota-
tion time is 4ms).

6.3 Reiserfs and Timeline Profiles
On Linux, atime updates are handled by the Linux
buffer flushing daemon, bdflush. This daemon writes
data out to disk only after a certain amount of time has
passed since the buffer was released; the default is thirty
seconds for data and five seconds for metadata. This
means that every five and thirty seconds, file system be-
havior may change due to the influence of bdflush. We
use our profile sampling method to analyze the behavior
of such periodic behavior. A sampled profile is simi-
lar to our standard profile, but instead of adding up all
of the operations for a given workload, we divide the
profile into fixed-time segments and save each segment
separately. This mode of operation is possible thanks to
the small size of the OSprof profile data. In Figure 9,
we show such a 3-dimensional profile of a known lock
contention between write super and read operations
on Reiserfs 3.6 on Linux 2.4.24. The x-axis shows the
bucket number and the y-axis shows the elapsed time in
CPU cycles. The three vertical black stripes on the read
profiles correspond to those peaks already shown in Fig-
ure 7: cached reads, disk buffer reads, and reads with a
disk access.
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Figure 9: Linux 2.4.24 Reiserfs 3.6 file-system profiles sampled
at 2.5 second intervals.

6.4 Analyzing Network File Systems
We connected two identical machines (described in Sec-
tion 5) with a 100Mbps Ethernet link and ran several
workloads. The purpose was to compare clients us-
ing the Linux implementation of the SMB protocol with
those using the Windows implementation of the CIFS
protocol (a modified version of SMB). The server ran
Windows with an NTFS drive shared over CIFS. Our
automated analysis script selected just six out of 51 pro-
filed operations based on their total latency when run-
ning our grep workload. Among them, the FindFirst
and FindNext operations on the Windows client had
peaks that were farther to the right than any other op-
eration (buckets 26–30 in the top two graphs of Fig-

ure 10). Layered profile analysis showed that these two
peaks were not present in the profiles of the Linux client
and alone account for 12% of the elapsed time, which
was 170 seconds in total. FindFirst searches for file
names with a given pattern and returns all matching file
names along with their associated metadata information.
It also returns a cookie, which allows the caller to con-
tinue receiving matches by passing it to FindNext.

By examining the peaks in other operations on the
client (e.g., read shown in Figure 10) and the corre-
sponding requests on the server, we found that instances
of an operation which fall into bucket 18 and higher
(greater than 168µs) involve interaction with the server,
whereas buckets to the left of it were local to the client.
All of the FindFirst operations here go through the
server, as do the rightmost two peaks of the FindNext
operation. We ran a packet sniffer on the network to in-
vestigate this further.

A timeline for a typical FindFirst transaction be-
tween a Windows client and a Windows server explains
the source of the problems and is shown on the left-
hand side of Figure 11. The client begins by send-
ing a FindFirst request containing the desired pat-
tern to search for (e.g., C:\linux-2.6.11\*). The
server replies with file names that match this pattern
and their associated metadata. Since the reply is too
large for one TCP packet, it is split into three packets
(“FIND FIRST reply,” “reply continuation 1,” and “reply
continuation 2”). The acknowledgment (ACK) for “re-
ply continuation 1” is sent immediately, but the ACK for
“reply continuation 2” is sent only after approximately
200ms. This behavior is a delayed ACK: because TCP
can send an ACK in the same packet as other data, it
delays the ACK in the hope that it will soon need to
send another packet to the same destination. Most im-
plementations wait 200ms for other data to be sent be-
fore sending an ACK on its own. Delaying an ACK is
considered to be good behavior, but the Windows server
does not continue to send data until it has received an
ACK for everything until that point. This unnecessary
synchronous behavior is what causes poor performance
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Windows server over SMB (right) as recorded on the server.
Times are in milliseconds (not drawn to scale). Protocols are
shown in parentheses.

for the FindFirst and FindNext operations. After the
server receives this ACK, it sends the client a “transact
continuation” SMB packet, indicating that more data is
arriving. This is followed by more pairs of TCP replies
and ACKs, with similar delays.

The right-hand side of Figure 11 shows a similar time-
line for a Linux client interacting with a Windows server
over SMB. The behavior is identical, except that instead
of sending a delayed ACK for “reply continuation 2,”
Linux sends a FindNext request immediately that also
contains an ACK. This causes the server to return more
entries immediately. We modified a Windows registry
key to turn off delayed ACKs, and found that it im-
proved elapsed time by 20%. This is not a solution to
the problem, but a way to approximate potential perfor-
mance benefits without waiting on ACKs.

7 Conclusions
We designed a new OS profiling method that is versatile,
portable, and efficient. The method allows the person
profiling to consider and analyze the OS and the events
being profiled at a high level of abstraction. In particu-
lar, the events can be anything that contribute to the OS
execution latencies. Our method allows profiling var-
ious characteristics and behavior of the whole OS, in-
cluding the I/O subsystem. The resulting profiles indi-
cate pathologies and their dependencies. Access to the
source code allows us to investigate these abstract char-
acteristics such as lock or semaphore contentions. How-
ever, even without the source code, most of the prob-
lems can be described and studied in detail. While ver-
satile, our method allows profiling with very high preci-
sion of about 40 CPU cycles and negligible overheads of
only about 200 CPU cycles per profiled OS entry point.

When run with an I/O-intensive workload, we measured
elapsed time overhead of less than 1%.

We used our method to collect and analyze profiles for
task schedulers, CPU-bound processes, and several pop-
ular Linux, FreeBSD, and Windows file systems (Ext2,
Ext3, Reiserfs, NTFS, and CIFS). To aid this analysis,
we developed automatic processing and visualization
scripts to present the results clearly and concisely. We
discovered, investigated, and explained multi-modal la-
tency distributions. We also identified pathological per-
formance problems related to lock contention, network
protocol inconsistency, and I/O interference.
Future work. We plan to apply our methods to more
OSs and use higher resolution profiles to explain more
complex internal OS behavior. Because of the compact-
ness of our profiles, we believe that OSprof is suitable
for clusters and distributed systems. We plan to expand
OSprof for use on such large systems, explore scalability
issues, and visual analytics driven profile automation.
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