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Abstract. We introduce the concept ofRuntime Verification with State Estima-
tion and show how this concept can be applied to estimate the probability that a
temporal property is satisfied by a run of a program when monitoring overhead is
reduced by sampling. In such situations, there may begapsin the observed pro-
gram executions, thus making accurate estimation challenging. To deal with the
effects of sampling on runtime verification, we view event sequences as observa-
tion sequences of a Hidden Markov Model (HMM), use an HMM model of the
monitored program to “fill in” sampling-induced gaps in observation sequences,
and extend the classic forward algorithm for HMM state estimation (which de-
termines the probability of a state sequence, given an observation sequence) to
compute the probability that the property is satisfied by an execution of the pro-
gram. To validate our approach, we present a case study basedon the mission
software for a Mars rover. The results of our case study demonstrate high predic-
tion accuracy for the probabilities computed by our algorithm. They also show
that our technique is much more accurate than simply evaluating the temporal
property on the given observation sequences, ignoring the gaps.

1 Introduction

Runtime verification (RV) is the problem of, given a programP , execution traceτ of
P , and temporal logic formulaφ, decide whetherτ satisfiesφ. To perform RV, one
typically transformsφ into amonitor(a possibly parametrized finite state machine)Mφ

andinstrumentsP so that it emitseventsof interest toMφ. This allowsMφ to process
these events and determine whether the event sequence satisfiesφ.

RV does not come for free. Theoverheadassociated with RV is a measure of how
much longer a program takes to execute due to runtime monitoring. If the original pro-
gram executes in timeR, and the instrumented program executes in timeR +M with
monitoring, we say that the monitoring overhead isM

R
.

Recently, a number of techniques have been developed to mitigate the overhead
due to RV [13, 9, 1, 14, 5]. Common to these approaches is the use of event sampling
to reduce overhead. Sampling means that some events are not processed at all, or are
processed in a limited (and thus less expensive) manner thanother events. A natural



question is:how does sampling affect the results of RV?This issue has been largely
ignored in prior work: the monitor simply reports the resultof processing the observed
events, without indicating how sampling might have affected the results.

For example, letφ be the formula2(a ⇒ 3c) (invariably,a is eventually followed
by c) and letτ be the tracea b c a b c a b c. Clearly τ satisfiesφ. Suppose now thatτ
is an incompletetrace of an execution with implicit gaps due to sampling. Although
we cannot decisively say whether the execution satisfiesφ (for example, there could be
an unobserveda event after the lastc event), we would like to compute a confidence
measure that the execution satisfiesφ.

In this paper, we introduce the concept ofruntime verification with state estima-
tion (RVSE), and show how this concept can be applied to estimate the probability that
a temporal property is satisfied by a run of a program when monitoring overhead is
reduced by sampling. In such situations, there may begapsin observed program exe-
cutions, making accurate estimation challenging.

The main idea behind our approach is to use a statistical model of the monitored
system to “fill in” sampling-induced gaps in event sequences, and then calculate the
probability that the property is satisfied. In particular, we appeal to the theory of Hidden
Markov Models [17]. An HMM is a Markov model in which the system being modeled
is assumed to be a Markov process with unobserved (hidden) states. In a regular Markov
model, states are directly visible to the observer, and therefore state transition probabil-
ities are the only required parameters. In an HMM, states cannot be observed; rather,
each state has a probability distribution for the possible observations (formally called
observation symbols). The classicstate estimationproblem for HMMs is to compute
the most likely sequence of states that generated a given observation sequence.

The main contributions of this paper are:

– We use HMMs to formalize the RVSE problem as follows. Given anHMM system
modelH , temporal propertyφ, and observation sequenceO (an execution trace that
may have gaps due to sampling), computePr(φ | O, H), i.e., the probability that
the system’s behavior satisfiesφ, givenO andH . Note that we useHiddenMarkov
Models, meaning that the states of the system are hidden fromthe observer. This
is because we intend to use machine learning to learn the HMM from traces that
contain only observable actions of the system, not detailedinternal states of the
system.

– Theforward algorithm[17] is a classic recursive algorithm for computing the prob-
ability that, given an observation sequenceO, an HMM ended in a particular state.
This problem is the so-calledfiltering version of the state estimation problem for
HMMs. We present an extension of the forward algorithm for the RVSE problem
that computes a similar probability, but in this case for thepaired execution of an
HMM system model and a monitor automaton for the temporal property φ. We
first present a version of the algorithm that does not consider gaps; in this case,
the states of the monitor are completely determined byO, because the monitor is
deterministic.

– We then present an algorithm that handles gaps. We use a special symbol to mark
gaps, i.e., points in the observation sequence where unobserved events might have
occurred. Gap symbols may be inserted in the trace by the instrumentation when it
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temporarily disables monitoring; or, if gaps may occur everywhere, a gap symbol
can be inserted at every point in the trace. When the algorithm processes a gap, no
observation is available, so the state of the monitor automaton is updated proba-
bilistically based on the current state estimation for the HMM and the observation
probability distribution for the HMM. Since the length of a gap (i.e., the number of
consecutive unobserved events) might be unknown, we allow the gap length to be
characterized by a probability distribution.

– We evaluate our RVSE methodology using a case study based on human operators
in a ground station issuing commands to a Mars rover [3]. Sampling of execu-
tion traces is simulated using SMCO-style overhead control[14]. Our evaluation
demonstrates high prediction accuracy for the probabilities computed by our algo-
rithm. It also shows that our technique is much more accuratethan simply evaluat-
ing the temporal property on the given observation sequences, ignoring the gaps.

2 Related Work

To the best of our knowledge, Runtime Verification with StateEstimation has not been
studied before, and our HMM-based technique to support the calculation of the condi-
tional probability that a system satisfies a temporal logic formula given a sampled event
trace (observation sequence) is new. In this section, we discuss related work on runtime
verification of statistical properties and on probabilistic model checking.

Sammapun et al. [18] consider runtime verification of probabilistic properties of the
form: given a conditionA, does the probability that an outcomeB occurs fall within
a given range? Their technique determines statistically, and with an adequate level of
confidence, whether a system satisfies a probabilistic property. Wang et al. [19] apply
a similar statistical RV technique, in conjunction with Monte Carlo simulation, to ana-
log and mixed signal designs. Recent work on the runtime verification of probabilistic
properties [11, 21] uses acceptance sampling and sequential hypothesis testing to out-
perform these approaches. In contrast, we perform runtime verification of traditional
non-probabilisticproperties, but in the presence of sampling.

Finkbeiner et al. [10] extend LTL to perform statistical experiments over runtime
traces, but they do not consider sampling. For example, their methodology can be used
to determine the percentage of positions in a trace at which the trace satisfies a tempo-
ral property. This is a different statistic than the conditional probabilities we compute.
LarvaStat [7] incrementally computes statistical information about runtime executions,
but it, too, does not consider sampling.

Probabilistic model checking [15, 2] can be used to compute the probability that
a Markov model, such as a Discrete-Time or Continuous-Time Markov Chain, satis-
fies a probabilistic temporal logic formula. Zhang et al. [20] extend probabilistic model
checking to HMMs, so that the probability that an HMM produces a given sequence of
observations can be computed. In contrast, we use HMMs to probabilistically fill in gaps
in sampled event traces, enabling us to estimate the probability that a (non-probabilistic)
temporal property is satisfied by a trace that contains gaps due to sampling. It is impor-
tant to note that for filling in the gaps, a considerably less accurate HMM model is
acceptable.
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3 Case Study: A Mars Rover Scenario

We illustrate and evaluate our approach on a software model of a planetary rover mis-
sion. The model is written in the SCALA programming language,4 allowing for fast
prototyping. Its architecture, depicted in Figure 1, is representative, in general terms,
of actual rover missions, such as the current Mars Science Laboratory5 (MSL) mission.
The scenario we consider consists of a rover operating on thesurface of Mars, controlled
by commands from ground-based human operators. The rover consists of a collection of
instruments (e.g., camera, drill, temperature sensor) performing specialized tasks. For
this case study, the rover hosts two generic instruments,A andB. Furthermore, every
event of importance occurring on the rover is recorded in a log, which is maintained on
the ground. A ground-based logger module receives and stores such events.

ground rover 

instrument A 

instrument B 

logger 

Command(instrument, name, time)  

         where instrument = A or B  

i

i

Command(A, name, time) 

Command(B, name, time) 

Command(instrument, name, time)  ent name time)meent, name, time) 

Dispatch(A, name, time)  

Success(A, name, time)  

Fail(A, name, time)  
or 

Dispatch(B, name, time)  

Success(B, name, time)  

Fail(B, name, time)  
or 

Fig. 1. Mission architecture.

Command(instrument, name, time) commands submitted to rover
Dispatch( instrument, name, time) dispatch of command from rover to instrument
Success( instrument, name, time) success of command on instrument
Fail( instrument, name, time) failure of command on instrument

Fig. 2. Events observed.

We consider four kinds of events, presented in Figure 2 and inspired by the sce-
nario explained by Barringer et al. [3]. Commands are issuedfrom ground to the rover
and are characterized by three parameters: instrument id (A or B), command name, and

4 http://www.scala-lang.org
5 http://mars.jpl.nasa.gov/msl
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a time stamp indicating when the event occurred. The other three events have similar
parameters. Upon receipt of a command, the rover reports this event to the logger (by
sending the command to the logger), and then sends the command to the relevant in-
strument. The instrument, upon receipt of the command, issues a dispatch event to the
logger (recording that it was dispatched to the instrument). The instrument then exe-
cutes the command. If the execution is successful, a successis reported to the logger.
If execution fails, a fail status is reported. It is possiblethat neither a success nor a
fail occur, and that the command is simply lost for some reason. An example log col-
lected during the execution of this system could be:Command(A, START, 1008) ,
Command(B, RESET, 2303) , Success(A, START, 4300) , Success(B,
RESET, 5430) .

One aspect of the desired behavior of the rover system is expressed by the require-
ment: EveryCommand(i, n, t1) event should eventually be followed by aSuccess( i, n, t2)
event, with noFail( i, n, t3) event occurring in between.

The above trace satisfies this property. The following tracedoes not satisfy the prop-
erty, because the first command fails explicitly, and the second command fails implicitly
(neither success nor failure occurs):Command(A, START, 1008) , Command(B,
RESET, 2303) , Fail(A, START, 4520) .

This property can be expressed in LTL as follows, where2 means “always”,U
means “until”, underscore means “don’t care”, and the subscript “cs” is mnemonic for
“command success”.

φcs = (∀ i : Instrument, n : Name.
2(Command(i, n, ) ⇒ ¬Fail( i, n, ) U Success( i, n, ) ))

(1)

The property was formulated and checked with TRACECONTRACT [4], a SCALA

API for trace analysis supporting parameterized state machines and temporal logic. In
TRACECONTRACT, the property is expressed as follows, where SCALA keywords are
in bold, TRACECONTRACT features are underlined, and thehot state waits for an event
that matches the pattern in one of thecasestatements and represents the requirement
that such an event eventually occurs:

class Contract extends Monitor [Event] {
require {

case Command(i,n,_) =>
hot {

case Fail(`i`, `n`, _) => error
case Success(`i`, `n`, _) => ok

}
}

}

4 Background

Hidden Markov Models.A Hidden Markov Model (HMM) [17] is a tupleH = 〈S, A, V, B, π〉
containing a setS of states, a transition probability matrixA, a setV of observa-
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tion symbols, an observation probability matrixB (also called “emission probabil-
ity matrix” or “output probability matrix”), and an initialstate distributionπ. The
states and observations are indexed (i.e., numbered), soS and V can be written as
S = {s1, s2, . . . , sNs

} andV = {v1, . . . , vNo
}, whereNs is the number of states, and

No is the number of observation symbols. LetPr(c1 | c2) denote the probability thatc1

holds, given thatc2 holds. The transition probability distributionA is anNs × Ns ma-
trix indexed by states in both dimensions, such thatAi,j = Pr(state issj at timet +1 |
state issi at timet). The observation probability distributionB is anNs × No ma-
trix indexed by states and observations, such thatBi,j = Pr(vj is observed at timet |
state issi at timet). πi is the probability that the initial state issi.

An example of an HMM is depicted in the left part of Figure 3. Each state is labeled
with observation probabilities in that state; for example,P(Succ)=.97 in states3

meansB3,Succ = 0.97, i.e., an observation made in states3 has probability0.97 of ob-
serving aSuccess event. Edges are labeled with transition probabilities; for example,
.93 on the edge froms2 to s3 means thatA2,3 = 0.93, i.e., in states2, the probability
that the next transition leads to states3 is 0.93.

An HMM generates observation sequences according to the following five-step pro-
cedure [17]. (1) Choose the initial stateq1 according to the initial state distributionπ.
(2) Sett = 1. (3) Choose thetth observationOt according to the observation proba-
bility distribution in stateqt. (4) Choose the next stateqt+1 according to the transition
probability distribution in stateqt. (5) Incrementt and return to step (3), or stop.

P(Cmd) = 1 

P(Succ) = 0
P(Disp) = 0 

P(Fail) = 0 

P(Cmd) = 0 

P(Succ) = .97 
P(Disp) = 0 

P(Fail) = .03 

P(Cmd) = 0 

P(Succ) = 0 
P(Disp) = 1 

P(Fail) = 0 

.07 

1 

.93 

1 

Fail 

Succ 

Cmd 

Disp 

Cmd 

Disp 

Fail 

Succ 

Cmd 

Disp 

Fail 

Succ 

DFSM HMM s1 

s2 s3 
m1 m2 m3 

Fig. 3. Left: an example of an HMM. The initial state distribution is: π1 = 1, π2 = 0, π3 = 0.
Right: Mcs, an example of a DFSM. States with a double border are accepting states. In both
machines,CmdabbreviatesCommand(i, n, ), Disp abbreviatesDispatch(i, n, ), Succ ab-
breviatesSuccess(i, n, ), andFail abbreviatesFail(i, n, ).

Theforward algorithm[17] is a classic algorithm for computing the probability that
an HMM ended in a particular state, given an observation sequenceO = 〈O1, O2, . . . , OT 〉.
Let Q = 〈q1, q2, . . . , qT 〉 denote the (unknown) state sequence that the system passed
through, i.e.,qt denotes the state of the system when observationOt is made. Let
αt(i) = Pr(O1, O2, . . . , Ot, qt = si | H), i.e., the probability that the firstt observa-
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tions yieldO1, O2, . . . , Ot and thatqt is si, given the modelH . To hide the notational
clutter from indexing ofV , we access theB matrix using the traditional notation [17]:

bi(vk) = Bi,k (2)

The forward algorithm for computingα is:

α1(j) = πjbj(O1) for 1 ≤ j ≤ Ns (3)

αt+1(j) =
(
∑

i=1..Ns
αt(i)Ai,j

)

bj(Ot+1)
for 1 ≤ t ≤ T − 1 and1 ≤ j ≤ Ns

(4)

In the base case,α1(j) is the joint probability of starting in statesj and emittingO1.
Similarly, the recursive case calculates the joint probability of reaching statesj and
emittingOT . The probability of reachingsj is calculated by summing over the imme-
diate predecessorssi of sj ; the summandαt(i)Ai,j is the joint probability of reaching
si while observingO1 throughOT−1 and then transitioning fromsi to sj . The cost of
computingα using these equations isO(N2

s T ).

Learning an HMM.One can obtain an HMM for a system automatically, by learningit
from complete traces using standard HMM learning algorithms [17]. These algorithms
require the user to specify the desired number of states in the HMM. These algorithms
allow (but do not require) the user to provide information about the structure of the
HMM, specifically, that certain entries in the transition probability matrix and the ob-
servation probability matrix are zero. This information can help the learning algorithm
converge more quickly and find globally (instead of locally)optimal solutions. If the
temporal property or properties to be monitored are known before the HMM is learned,
then the set of observation symbols can be limited to containonly events mentioned in
those properties, and the number of states can be chosen justlarge enough to be able to
model the relevant aspects of the system’s behavior. Note that we useHiddenMarkov
Models, meaning that the states of the system are hidden fromthe observer, because we
intend to learnH from traces that contain only observable actions of the system, not
detailed internal states of the system.

Deterministic Finite State Machines.Our algorithm assumes that the temporal prop-
ertyφ to be monitored is expressed as a parametrized deterministic finite state machine
(DFSM). The DFSM could be written directly or obtained by translation from a lan-
guage such as LTL. A DFSM is a tupleM = 〈SM , minit , V, δ, F 〉, whereSM is the set
of states,minit in SM is the initial state,V is the alphabet (also called the set of input
symbols),δ : SM × V → SM is the transition function, andF is the set of accepting
states (also called “final states”). Note thatδ is a total function. A traceO satisfies the
property iff it leavesM in an accepting state.

For example, a DFSMMcs that expresses the propertyφcs in Equation 1 is depicted
in the right part of Figure 3. TheDispatch event is not in the alphabet of the TRACE-
CONTRACT propertyφ and hence normally would be omitted from the alphabet of the
DFSM; we include it in this DFSM for illustrative purposes, so that the alphabets of the
HMM and DFSM are the same.
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5 Algorithm for RVSE

The first subsection defines the problem more formally and presents our algorithm for
RVSE. Our algorithm is based on the forward algorithm in Section 4 and hence can
be used for on-line or post-mortem analysis. The second subsection describes how we
handle parameterized properties.

5.1 Problem Statement and Algorithm

A problem instance is defined by an observation sequenceO, an HMM H , and a tem-
poral propertyφ over sequences of actions of the monitored system.

The observation sequenceO contains events that are occurrences of actions per-
formed by the monitored system. In addition,O may contain the symbolgap(L) denot-
ing a possible gap with an unknown length. The length distribution L is a probability
distribution on the natural numbers:L(ℓ) is the probability that the gap has lengthℓ.

If no information about the location of gaps is available (and hence nogap events
appear in the trace obtained from the runtime monitor), we insert agap event at the
beginning of the trace and after every event in the trace, to indicate that gaps may occur
everywhere.

The HMMH = 〈S, A, V, B, π〉 models the monitored system, whereS = {s1, . . . , sNs
}

andV = {v1, . . . , vNo
}. Observation symbols ofH are observable actions of the mon-

itored system.H need not be an exact model of the system.
The propertyφ is represented by a DFSMM = 〈SM , minit , V, δ, F 〉. For simplic-

ity, we take the alphabet ofM to be the same as the set of observation symbols ofH .
It is easy to allow the alphabet ofM to be a subset of the observation symbols ofH ,
by modifying the algorithm so that observations of symbols outside the alphabet ofM
leaveM in the same state.

The goal is to computePr(φ | O, H), i.e., the probability that the system’s behavior
satisfiesφ, given observation sequenceO and modelH .

First, we extend the forward algorithm in Section 4 to keep track of the state ofM .
Let mt denote the state ofM immediately after observationOt is made. Letαt(i, m) =
Pr(O1, O2, . . . , Ot, qt = si, mt = m | H), i.e., the joint probability that the firstt
observations yieldO1, O2, . . . , Ot and thatqt is si and thatmt is m, given the model
H . Let pred(n, v) be the set of predecessors ofn with respect tov, i.e., the set of
statesm such thatM transitions fromm to n on inputv. A conditional expression
c ? e1 : e2 equalse1 if c is true, and it equalse2 if c is false. The extended forward
algorithm appears below. The main changes are introductionof a conditional expression
in equation (6), reflecting that the initial state ofM is minit , and introduction of a sum
over predecessorsm of n with respect toOt+1 in equation (7), analogous to the existing
sum over predecessorsi of j, so that the sum takes into account all ways of reaching
the configuration in whichH is in statesi andM is in statem.

pred(n, v) = {m ∈ SM | δ(m, v) = n} (5)

α1(j, n) = (n = δ(minit , O1)) ? πjbj(O1) : 0
for 1 ≤ j ≤ Ns andn ∈ SM

(6)
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αt+1(j, n) =















∑

i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i, m)Ai,j















bj(Ot+1)

for 1 ≤ t ≤ T − 1 and1 ≤ j ≤ Ns andn ∈ SM

(7)

Now we extend the algorithm to handle gaps. The result appears in Figure 4. An
auxiliary functionpi is used to calculate the probability of transitions ofM during
gaps. WhenH is in statesi andM is in statem, pi(m, n) is the probability that the
next observation (i.e., the observation in statesi) causesM to transition to staten. Since
we do not know which event occurred, we sum over the possibilities, weighting each
one with the appropriate observation probability fromB.

Another auxiliary functiongℓ, called the gap transition relation, is used to compute
the overall effect of a gap of lengthℓ. Specifically,gℓ(i, m, j, n) is the probability that,
if H is in statesi andM is in statem and a gap of lengthℓ occurs, then theH is
in statesj andM is in staten after the gap. The definition ofgℓ+1 uses a recursive
call to gℓ to determine the probabilities of states reached after a gapof lengthℓ (these
intermediate states are represented byi′ andm′), and then calculates the effect of the
(ℓ + 1)th unobserved event as follows:Ai′,j is the probability thatH transitions from
statesi′ to statesj , andpj(m

′, n) is the probability thatM transitions to staten.

In the definition ofα1, for the caseO1 = gap(L), there is a probabilityL(0) that
no gap occurred, in which caseM remains in its initial stateminit and the probability
distribution for states ofH remains asπj ; furthermore, for eachℓ > 0, there is a
probabilityL(ℓ) of a gap of lengthℓ, whose effect is computed by a call togℓ, andπi is
the probability thatH is in statesi at the beginning of the gap.

In the definition ofαt+1, for the caseOt+1 = gap(L), there is a probabilityL(0)
that no gap occurred, in which case the state of the HMM and theDFSM remain un-
changed, soαt+1(j, n) = αt(j, n); furthermore, for eachℓ > 0, there is a probability
L(ℓ) of a gap of lengthℓ, whose effect is computed by a call togℓ, andαt(i, m) is the
probability thatH is in statesi andM is in statem at the beginning of the gap.

Although the algorithm involves a potentially infinite sum over ℓ, typically L(ℓ)
is non-zero for only a finite number of values ofℓ, in which case the sum contains
only a finite number of non-zero terms. For example, if the system uses lightweight
instrumentation to count events during gaps, then the position and length of all gaps are
known. In this case, for each gap,L(ℓ) is non-zero only for the value ofℓ that equals the
number of unobserved events (i.e., the gap length). If counts of unobserved events are
unavailable (because monitoring is completely disabled during gaps), it is sometimes
possible to determine (based on characteristics of the system and how long monitoring
was disabled) a threshold such thatL(ℓ) is non-zero only below that threshold. Even if
no such threshold exists,L(ℓ) typically approaches 0 asℓ becomes large, so the sum
can be approximated by truncating it after an appropriate number of terms.
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pi(m, n) =
∑

v∈V s.t.δ(m,v)=n

bi(v) (8)

g0(i, m, j, n) = (i = j ∧ m = n) ? 1 : 0 (9)

gℓ+1(i, m, j, n) =
∑

i′∈[1..Ns],m′∈SM

gℓ(i, m, i
′
, m

′)Ai′,jpj(m
′
, n) (10)

α1(j, n) = (11)
{

(n = δ(minit , O1)) ? πjbj(O1) : 0 if O1 6= gap(L)
L(0)(n = minit ? πj : 0) +

∑

ℓ>0,i∈[1..Ns]
L(ℓ)πigℓ(i, minit , j, n) if O1 = gap(L)

for 1 ≤ j ≤ Ns andn ∈ SM

αt+1(j, n) =

































































∑

i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i, m)Ai,j















bj(Ot+1) if Ot+1 6= gap(L)

L(0)αt(j, n) +
∑

ℓ>0

L(ℓ)
∑

i∈[1..Ns]

m∈SM

αt(i, m)gℓ(i, m, j, n) if Ot+1 = gap(L)

for 1 ≤ t ≤ T − 1 and1 ≤ j ≤ Ns andn ∈ SM

(12)

Fig. 4.Forward algorithm modified to handle gaps.

5.2 Handling Parameterized Temporal Properties

Our approach supports parameterized temporal properties.Specified events trigger cre-
ation of a new instance of the parameterized property, and parameters of the trigger
event are used as parameters of the property. For example, the propertyφcs in equation
(1), and the corresponding DFSMMcs in Figure 3, are parameterized by the instrument
i and the namen. The parameters of the DFSM may be used in the definition of the
alphabet of the DFSM; in other words, the alphabet is also parameterized. For example,
the alphabet ofMcs is{Command(i ,n, ) , Dispatch( i ,n, ) , Success( i ,n, ) , Fail( i ,n, ) }.

For a parameterized property, we decompose (or “demultiplex”) a given trace into
a set of subtraces by projecting it onto the alphabet of each instance of the property.
The HMM is learned from these subtraces; thus, the HMM represents the slice of the
system’s overall behavior relevant to a single instance of the property. When learning
the HMM, we abstract from the specific values of the parameters in each subtrace,
because the values are, of course, different in each subtrace, and we do not aim to learn
the distribution of parameter values.

When applying our modified forward algorithm for a parameterized property, we
run the algorithm separately for each instance of the property, and use the corresponding
subtrace (i.e., the projection of the trace onto the alphabet of that property instance) as
the observation sequenceO.
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When projecting a trace containing gaps onto the alphabet ofa property instance, it
is typically unknown whether the unobserved event or eventsthat occurred during a gap
are in that alphabet. This can be reflected by modifying the length distribution parameter
of the gap symbol appropriately before inserting the gap in the subtrace for that property
instance. Developing a method to modify the length distribution appropriately, based on
the nearby events in the trace and the HMM, is future work. Leeet al.’s work on trace
slicing [16] might provide a basis for this.

The above approach does not assume any relationship betweenthe property parametriza-
tion and the sampling strategy. An alternative approach is to adopt a sampling strategy
in which, for each property instance, either all relevant events are observed, or none
of them are. For example, when QVM [1] checks properties of Java objects, it selects
some objects for checking, monitors all events on those objects, and monitors no events
on other objects. With this approach, the property is checked with 100% confidence for
the selected objects, but it is not checked at all for other objects. This trade-off might be
preferable in some applications but not in others. Also, this property-directed sampling
may incur more overhead than property-independent sampling, because it must ensure
that all events relevant to the selected property instancesare observed.

6 Evaluation

6.1 Evaluation Methodology

We used the following methodology to evaluate the accuracy of our approach for a
given system.

1. Produce a setTL of traces by monitoring the system without sampling, and learn
an HMM H from them.

2. Produce another setTE of traces by monitoring the system without sampling, and
use them for evaluation as follows.

3. Produce a sampled versioňO of each traceO in TE. If the system is deterministic,
Ǒ can be produced by re-running the system on the same input as forO while using
sampling. An alternative approach, applicable regardlessof whether the system
is deterministic, is to write a program that reads a trace, simulates the effect of
sampling, and outputs a sampled version of the trace.

4. For each traceO in TE, apply our algorithm to compute the probabilityPr(φ|Ǒ, H).
5. Compare the probabilities from the previous step to reality, by partitioning the

traces inTE into “bins” (i.e., sets) based onPr(φ|Ǒ, H), and checking whether
the expected fraction of the traces in each set actually satisfy φ. Specifically, using
B + 1 bins, for b ∈ [0..B], the set of traces placed in binb is TE(b) = {O ∈
TE | b/B ≤ Pr(φ|Ǒ, H) < (b+1)/B}. Let satact(b) denote the fraction of traces
in bin b that actually satisfyφ. Based on the results from our algorithm,satact(b) is
expected to be approximatelysatest(b) = average({Pr(φ|Ǒ, H) | O ∈ TE(b)}).
The subscript “est” is mnemonic for “estimation”, i.e., “expected based on state
estimation”.

6. Quantify the overall inaccuracy as a single numberI between 0 and 1, where 0
means perfect accuracy (i.e., no inaccuracy), by summing the differences between
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the actual and expected fractions from the previous step fornon-empty bins and
normalizing appropriately (“ne” is mnemonic for “non-empty”):

Bne = {b ∈ [0..B] | TE(b) 6= ∅} (13)

I =
1

|Bne|

∑

b∈Bne

|satact (b) − satest (b)|. (14)

7. Put this inaccuracy into perspective by comparing it withthe inaccuracy of the naive
approach that ignores the effect of sampling and simply evaluates the property on
sampled traces, ignoring gaps. Specifically,satnaive(b) is the fraction of traces in
TE(b) such that the sampled trace satisfiesφ, i.e., satnaive(b) = |{O ∈ TE(b) |
Ǒ |= φ}|/|TE(b)|, and

Inaive =
1

Bne

∑

b∈Bne

|satact(b) − satnaive(b)|. (15)

If the sampling strategy has a parameter that controls how many events are observed,
then the inaccuracyI can be graphed as a function of that sampling parameter. For
example, SMCO has a parameterot, the target overhead. We expect the inaccuracy
to approach 0 as the fraction of events that are observed approaches 1. Similarly, for a
particular traceO, Pr(φ|Ǒ, H) can be graphed as a function of that sampling parameter;
if the traceO satisfiesφ, this curve should monotonically increase towards 1 as the
fraction of events that are observed approaches 1.

6.2 Experiments

We applied the above methodology to the rover case study described in Section 3. The
SCALA model was executed to generate 200 traces, each containing 200 issued com-
mands. The average length of the traces is 587 events. To facilitate evaluation of our
approach, the model was modified to pseudo-randomly introduce violations of the re-
quirementφcs in Equation 1. Approximately half of the traces satisfy the requirement.
In the other half of the traces, the requirement is violated by approximately 30% of the
commands; among those commands, approximately half have anexplicit Fail event,
and the other half do not have aSuccess or Fail event. We wrote a program that
reads a trace, simulates the sampling performed by SMCO witha global controller [14],
and then outputs the trace with some events replaced bygap(L0), whereL0(0) = 0,
L0(1) = 1, andL0(ℓ) = 0 for ℓ > 1. Note thatgap(L0) represents a definite gap of
length 1. The use of a definite gap reflects that the SMCO controller knows when it dis-
ables and enables monitoring, and that (in an actual implementation) lightweight instru-
mentation would be used to count the number of unobserved events when monitoring
is (mostly) disabled. With the target overhead that we specified, the SMCO simulator
replaced 47% of the events with gaps.

Based on the parameters of the propertyφcs, each sampled trace was decomposed
into a separate subtrace for each instrument and command, following the approach in
Section 5.2. When decomposing the trace, we assigned each gap to the appropriate
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subtrace by referring to the original (pre-sampling) trace. Although it is generally unre-
alistic to assume that the monitor can assign gaps to subtraces with 100% accuracy, this
assumption allows us to isolate this source of inaccuracy and defer consideration of it
to future work, in which we plan to introduce uncertain gaps into subtraces correspond-
ing to nearby events in the full trace, using the HMM to compute probabilities for the
uncertain gaps.

To obtain the HMMH , we manually specified the number of states (six) and the
structure of the HMM, and then learned the transition probability matrix and observa-
tion probability matrix from half of the generated traces. We used the other half of the
generated traces for evaluation.

We measured the inaccuracy of our approach usingB = 10, and obtainedI =
0.0205. This level of inaccuracy is quite low, considering the severity of the sampling:
recall that sampling replaced 47% of the events with gaps. Incomparison, the inac-
curacy of the naive approach isInaive = 0.3135; this is approximately a 15× worse
I.

7 Conclusions and Future Work

This paper introduces the new concept ofRuntime Verification with State Estimation
(RVSE) and shows how this concept can be applied to estimate the probability that a
temporal property is satisfied by a run of a system given a sampled execution trace. An
initial experimental evaluation of this approach shows encouraging results.

One direction for future work, mentioned in Section 5.2, is to determine the prob-
ability that a gap belongs to each subtrace of a parameterized trace, in order to more
accurately determine the length distribution parameter for gap events inserted in sub-
traces. Because the parameters of events in gaps are unknown, it is impossible to directly
determine the subtrace to which a gap belongs.

Although our Mars rover case study is based on actual rover software, due to ITAR
restrictions, our evaluation used parametrized event traces synthetically produced by a
simulator. We plan to conduct additional case studies involving actual traces obtained
from publicly available real-world software. Likely target software systems include the
GCC compiler suite and the Linux kernel.

Another direction for further study is RVSE of quantitativeproperties. For example,
the goal of integer range analysis [9, 14] is to compute the range (upper and lower
bounds) of each integer variable in the program. Performingthis kind of analysis on
traces with gaps can lead to inaccuracies in the ranges computed, due to unobserved
updates to integer variables. In this case, we would like to extend our RVSE algorithm
to adjust (improve) the results of the analysis as well as provide a confidence level in
the adjusted results. Similar comments apply to other quantitative properties, such as
runtime analysis of NAPs (non-access periods) for heap-allocated memory regions [13,
14].

Our broader goal is to use probabilistic models of program behavior, learned from
traces, for multiple purposes, including program understanding [6], program visualiza-
tion [8], and anomaly detection [12] (by checking future runs of the program against
the model).
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