
Evaluation of Nilfs2 for Shingled Magnetic Recording (SMR) Disks
Technical Report FSL-14-03

Benixon Arul Dhas and Erez Zadok
Stony Brook University

James Borden and Jim Malina
Western Digital Corporation

Abstract

The nature of Shingled Magnetic Recording (SMR)
disks makes log structured file systems suitable for such
disks. Nilfs2 is a promising log structured file system
and is available in the Linux kernel source as an exper-
imental file system. Nilfs2 is actively maintained and
stable, providing a good platform for functional and per-
formance evaluation of SMR disks. The Linux Test
Project (LTP) test-suite is used for functional testing
and Filebench is used to evaluate various macro- and
micro-benchmarking workloads. The results show that
for most of the workloads for Nilfs2 there is no signifi-
cant difference between a normal disk and the SMR disk
prototype. The results look promising in that there is
some performance loss for some workloads because of
the firmware modification to support SMR drives. The
random-write workload showed a decrease in through-
put of about 15%. All other workloads showed through-
put decrease of less than 5%.

1 Introduction
Evaluation of Shingled Magnetic Recording (SMR)
disks provides using an unmodified version of Nilfs2
offers a baseline for performance of these disks. SMR
disks allow only sequential writing and hence demand a
log structured write access. Nilfs2 [8], being a strictly
log-structured file system, allows for usage of SMR
disks with very minimal modification to firmware.

We tested the functionality of Nilfs2 using the SMR
disk by using the Linux Test Project (LTP) [4] test suite.
This consists of hundreds of tests that are designed to ex-
ercise the interfaces provided by file systems for any er-
rors. A large number of these subsets were run on SMR
and regular disks. (Throughout the rest of this paper,
we refer to “regular” as the non-SMR disk.) The results
showed that Nilfs2 was equally stable on both the SMR
disk and regular disks. The SMR drive firmware has a
feature to enforce that the host wrote sequentially within
zones; Nilfs2 did not violate this requirement.

We used Filebench [2] for micro- and macro-
benchmarking of Nilfs2 on SMR disks. We evalu-
ated macro benchmarking workloads consisting of web-
server, mailserver, and fileserver on SMR and regular
disks. These are representative of practical workloads.
The results obtained shows that Nilfs2 can be used on
SMR disks without significant loss in performance for
workloads that are read-intensive or have large sequen-

tial writes. We ran the following micro-benchmarking
workloads: random read, random read direct, random
write, random write direct, sequential read, and sequen-
tial write. The results from these micro benchmarking
indicate that there is no significant change in the per-
formance due to reads. However, there is a drop in
the performance during write in SMR disks, believed to
be due to the overhead of the modified firmware in the
SMR disk. We saw a maximum decrease in through-
put of 15% for random write with direct I/O work-
load (bypassing the host OS cache). For other work-
loads, which primarily consisted of non-random writes,
we saw that the throughput degradation was less than
5%. For read-intensive workloads there was no signifi-
cant difference in observed throughput. We see that the
Webserver workload has the least performance impact
among the macro-benchmarking workloads, because it
consists mainly of reads and sequential writes to the Web
server log (i.e., very few random writes).

2 Background
Shingled Magnetic Recording (SMR) technology
promises eventual increased storage density of the order
3–4× [5] that of current HDDs; each generation of new
SMR drives is expected to yield 5–25% space increases,
with first generation increases reported at 20–25% [3,6].
However, using the entire disk as shingled could cause
some limitations for practical application of these disks.
For example, one might have to wait until the entire
one-zone disk is full or nearly full to garbage collect
freed blocks. Therefore, it may be acceptable to incur
some additional firmware overhead and somewhat
reduced capacity, and partition the disk into multiple
zones to improve performance. Each zone is shingled
such that writes within zones have to be physically
sequential to avoid data loss; writes across zones,
however, can be random as long as sequentiality is
maintained within each SMR zone. There are also two
zones (the first and the last zone) which are not shingled,
thereby allowing random access in these zones; this
is a current necessary requirement for running Nilfs2.
Note, however, that many permutations of numbers and
types of zones are possible (i.e., any mix of shingled
and regular zones). Indirection systems [1] are one form
of software/firmware to make shingled disks usable
by enforcing sequential physical writes for random
logical writes. Indirection systems typically have to
maintain a logical-to-physical mapping of blocks, such

1



as an SSD’s Flash Translation Layer (FTL). This can
result in a growing amount of meta-data that has to be
maintained for larger disks (even though data sizes are
much larger than meta-data sizes). The meta data for
such indirection systems mainly includes the mappings
from logical LBA to physical LBA. The percentage of
space occupied by this meta data is small compared to
the disk capacity. However, this is still a large amount
of information and is difficult to keep it all in main
memory. So in this work we used a log-structured file
system at the host, instead of indirection at the block
layer or firmware.

3 Benchmarks
3.1 Experiment Setup
We executed LTP and Filebench on the regular HDD and
the SMR disk. To avoid any out-of-sequence writes in
the block layer, we set the Linux I/O scheduler to noop.
This was done for both the regular and SMR disks, for
the LTP and Filebench tests. CFQ is the I/O scheduler
used by default in Linux based systems. So we also re-
peated the experiments on regular disks with CFQ as I/O
scheduler. The SMR disk had two random-access zones
(first and last zone). The entire disk had 20,000 zones
with each zone spanning 128MB.

3.1.1 LTP
We executed the LTP test suite for regular and SMR
disks, both formatted with Nilfs2. We mounted the SMR
disk on a system with Intel Pentium IV processor run-
ning at 3.40GHz and 2GB of main memory. we mounted
the regular HDD on a system with an Intel Pentium
IV processor running at 2.40GHz and 640MB of Main
memory. The operating system on both machines con-
sisted of a vanilla Linux kernel version 3.8.2 compiled
over a CentOS Linux distribution Version 6.2. The oper-
ating system was hosted on an ext4 file system mounted
over a 40GB Western Digital SATA hard disk. Since the
objective was to evaluate any discrepancies in the func-
tionality, the minor differences in the configurations of
the machines may not be of much significance. Still, we
are planning to repeat these tests on a modern server in
the near future.

3.1.2 Filebench
We executed Filebench workloads on a system with In-
tel Pentium IV processor running at 3.40GHz and 2GB
of Main memory. The operating system consisted of a
vanilla Linux kernel version 3.8.2 compiled over a Cen-
tOS Linux distribution Version 6.2. The operating sys-
tem was hosted on an ext4 file system mounted over
a 40GB Western Digital WDC WD400BD-75JMC0
SATA disk running at 7,200 RPM with a maximum sus-
tained transfer rate of 56MB/sec. The regular and SMR

disks were connected to SATA ports via the same PCI
card. The regular disk was a 3TB Western Digital WDC
WD30EZRX-00MMMB0 SATA disk and the SMR disk
was a 2.68TB Western Digital WDC WD30EZRX-
00MMMB0 SATA disk. The actual SMR disk before
firmware modification had a capacity of 3TB. However,
after modifying the firmware to support 20,000 zones of
128MB each, the capacity was limited to 2.68TB.

3.2 Experiment Description
3.2.1 LTP
We used the LTP [4] test suite to evaluate dio, fs, fsx
and mm sub tests and other auxiliary sub tests like ipc,
math, pty, nptl, sched, syscalls and containers. A brief
description of each sub test is provided below,

• The dio test automation suite helps run direct in-
put/output functionality tests and report results.

• The fs test automation suite helps run file system
functionality tests and report results.

• The fsx test automation suite helps extended file
system functionality tests and report results.

• The mm test automation suite helps run memory
management functionality tests and report results.

• The ipc test automation suite helps run inter pro-
cess communication functionality tests and report
results.

• The math test automation suite helps run mathemat-
ical functionality tests and report results.

• The pty test automation suite helps run pseudo ter-
minal functionality tests and report results.

• The nptl test automation suite helps run Native
POSIX Threading Library functionality tests and
report results.

• The sched test automation suite helps run scheduler
functionality tests and report results.

• The syscalls test automation suite helps run system
calls functionality tests and report results.

• The container test automation suite helps run the
container functionality (e.g., utsname) tests and re-
port results.

The results for both SMR and regular disks were
the same. To ensure that the results were consis-
tent, we repeated the tests five times. There were
some failure cases for both SMR and regular disk.
These were containers, dio4, dio10, quota remount
test01, ksm03, ksm03 1, ftruncate04, ftruncate04 64,

2



swapoff01, swapoff02, swapon and sysctl03. Since
these failures were seen in both scenarios, we conclude
that these are not due to the SMR disk but rather than
Nilfs2 itself is lacking in some features. Note that this
is not uncommon: in our experience many file systems
pass the vast majority of LTP tests, but not necessarily
all.

3.2.2 Filebench
Each of the Filebench workloads were run for a period
of one hour and repeated five times. The average of
the five runs was calculated and plotted along with the
standard deviation. Unless otherwise noted, all standard
deviations were less than 5% of the mean, indicating
a fairly stable experiment. We executed the Filebench
workloads with the help of bench-scripts with the au-
topilot [7] tool.

Macro benchmark workloads. The macro bench-
marks in Filebench are approximate simulations of real
time workloads. The results from these workloads are
representative of real workloads like a webserver and
fileserver under normal scenarios. Although these may
not be as accurate as trace replays, from a file-system
evaluation perspective, this is one of the best ways to
benchmark.

• The Webserver workload consisted primarily of
reading small files randomly. We configured
Filebench with the default webserver workload
with 100 threads running in parallel. We scaled the
entire workload to 8GB consisting of 512,000 files
each of size 16KB.

• The Mailserver workload consisted of random
deletion, write and append to small files. We con-
figured mailserver workload to run 16 threads in
parallel. We scaled the entire workload to 8GB con-
sisting of 512,000 files each of size 16KB.

• The Fileserver workload consisted of random
write, append, deletion and getting statistics of
moderately sized files. We configured the fileserver
workload to run 50 threads in parallel. We scaled
the entire workload to 8GB consisting of 64,000
files each of size 128KB.

Micro benchmark workloads. Micro benchmarking
allows us to focus on a particular aspect of the file sys-
tem and capture its performance. We executed bench-
marks for random and sequential read/write workloads.
We use 4KB I/O sizes because they meet the most com-
mon native disk block size (and CPU page-cache size)
on most systems today.

• We configured the Random read workload to run
for a single file of size 5GB accessed by 10 pro-
cess instances with 10 threads each with I/O size of
4KB.

• We configured the Random read direct workload
to run for a single file of size 5GB accessed by 10
process instances with 10 threads each with I/O size
of 4KB.

• We configured the Random write to run for a sin-
gle file of size 5GB accessed by 10 process in-
stances with 10 threads each with I/O size of 4KB.

• We configured the Random write direct workload
to run for a single file of size 5GB accessed by 10
process instances with 10 threads each with I/O size
of 4KB.

• We configured the Sequential read workload to
run for a single file of size 5GB accessed by 10 pro-
cess instances with 10 threads each, with I/O size of
4KB.

• We configured the Sequential write workload to
run for a single file of size 5GB accessed by 10 pro-
cess instances with 10 threads each, with I/O size of
4KB.

4 Evaluation
4.1 Macro Benchmarks
Figure 1 depicts the comparison of throughputs of the
webserver, mailserver, and fileserver workloads for the
SMR disk with noop I/O scheduler, regular disk with
noop I/O scheduler, and regular disk with CFQ I/O
scheduler. The operations per second for the same exper-
iment is shown in Figure 2. From Figure 1 we observe
the following. For the webserver workload, the through-
put was almost the same for both SMR and regular disks
with noop as I/O scheduler. Also, the throughput for the
regular disk with the CFQ I/O scheduler was about 11%
more that the previous two cases. We believe that the
difference is primarily due to merging of multiple I/O
requests at the block layer in the queues maintained at
the I/O scheduler. The webserver workload creates lot
of small I/O read requests that can benefit from merging
at the block layer. This needs to be verified with further
experiments.

The Mailserver workload for SMR disks from Fig-
ure 1 shows about a 7% decrease in throughput com-
pared to a regular disk with noop as I/O scheduler. This
decrease can be attributed to the overhead incurred at the
device firmware for write requests. The CFQ I/O sched-
uler for the regular disk shows an increase in throughput

3



 0

 2

 4

 6

 8

 10

 12

 14

webserver mailserver fileserver

th
ro

u
g

h
p
u

t 
(m

b
/s

)

Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

1.50
0.89

11.35

1.52
0.95

11.93

1.69

0.96

10.09

Figure 1: Throughput plot for macro benchmark workloads of
webserver, mailserver, fileserver run using Filebench

 0

 100

 200

 300

 400

 500

 600

webserver mailserver fileserver

o
p
er

at
io

n
s 

/ 
se

c

Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

295.77
271.91

477.49

299.45 289.95

501.57

332.20

292.47

424.65

Figure 2: Operations per sec plot for macro benchmark work-
loads of webserver, mailserver, fileserver run using Filebench

of 1% when compared to the regular disk with noop as
I/O scheduler.

The Fileserver workload in Figure 1 shows a similar
pattern as that of the mailserver with a higher absolute
throughput. The SMR disk throughput is 5% lower than
the regular disk with the noop I/O scheduler, which in
turn is 15% higher than the regular disk with CFQ as the
I/O scheduler.

4.2 Micro Benchmarks
Figure 3 depicts the comparison of throughput of ran-
dom read workloads for the SMR disk with the noop I/O
scheduler, regular disk with the noop I/O scheduler and
the regular disk with the CFQ I/O scheduler. The op-
erations per second for the same experiment are shown
in Figure 4. The Random read workloads from Figure 3
show that for both with and without direct-I/O, the result
was almost the same throughput for all three cases. This
indicates that the overheads for reads due to the firmware
modification are negligible.

Figure 5 depicts the comparison of throughput of
random-write workloads for the SMR disk with the noop
I/O scheduler, the regular disk with the noop I/O sched-
uler, and the regular disk with the CFQ I/O scheduler.
The operations per second for the same experiment is
shown in Figure 6. From Figure 5, we see that the
random-write workload without direct I/O for the SMR
disk is 4% lower than the regular disk with the noop
I/O scheduler. Furthermore, the regular disk with the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Random read Random read direct

th
ro

u
g

h
p
u

t 
(m

b
/s

)

Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

0.50 0.500.50 0.500.50 0.50

Figure 3: Throughput plot for micro benchmark workloads of
random read with and without direct I/O run using Filebench

 0

 50

 100

 150

 200

 250

 300

 350

 400

Random read Random read direct
o
p
er

at
io

n
s 

/ 
se

c
Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

140.73 134.64141.50 135.49
144.57

135.41

Figure 4: Operations per sec plot for micro benchmark work-
loads of random read with and without direct I/O run using
Filebench

CFQ I/O scheduler has a throughput of 0.5% lower than
the noop I/O scheduler. Random writes with the di-
rect I/O workload has its throughput reduced by 92%
as compared to random write without direct I/O. Among
the random write with direct I/O, a similar pattern for
throughput was seen as the random write without direct
I/O. The throughput of random write direct workload on
the SMR disk is seen to be 15% lower than that of regu-
lar disk for the same workload from Figure 5. This might
be because of firmware modification which might have
disabled disk caching to enforce sequential write.

 0

 1

 2

 3

 4

 5

 6

 7

Random write Random write direct

th
ro

u
g
h
p
u
t 

(m
b
/s

)

Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

6.24

0.46

6.50

0.54

6.46

0.51

Figure 5: Throughput plot for micro benchmark workloads of
random write with and without direct I/O run using Filebench

Figure 7 depicts the comparison of throughput of se-
quential access workloads for the SMR disk with the
noop I/O scheduler, the regular disk with the noop I/O
scheduler and the regular disk with the CFQ I/O sched-
uler. The operations per second for the same experiment
is shown in Figure 8.

4



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Random write Random write direct

o
p
er

at
io

n
s 

/ 
se

c

Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

1610.18

130.36

1675.06

149.88

1666.30

142.99

Figure 6: Operations per sec plot for micro benchmark work-
loads of random write with and without direct I/O run using
Filebench

 0

 5

 10

 15

 20

 25

 30

 35

 40

Sequential read Sequential write

th
ro

u
g
h
p
u
t 

(m
b
/s

)

Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

36.43

22.85

36.53

23.36

36.48

23.25

Figure 7: Throughput plot for micro benchmark workloads of
sequential read and write run using Filebench

 0

 2000

 4000

 6000

 8000

 10000

Sequential read Sequential write

o
p
er

at
io

n
s 

/ 
se

c

Workload

Shingled disk with noop I/O scheduler
Regular disk with noop I/O scheduler
Regular disk with CFQ I/O scheduler

9338.34

5862.20

9363.47

5990.83

9350.70

5963.24

Figure 8: Operations per second plot for micro benchmark
workloads of sequential read and write run using Filebench

The sequential access workloads from Figure 7 show
a considerable increase in the throughput as compared to
the random access workloads in Figure 3 and Figure 5.
The pattern within these workloads for the SMR disk,
the regular disk with the noop I/O scheduler, and the
regular disk with the CFQ as I/O scheduler follow the
same pattern as that of random access.

Evaluation summary. In sum, the LTP results were
all good. There were no functional discrepancies due
to the SMR disk for the LTP tests. The Filebench results
showed a maximum drop in throughput of about 15% for
random write direct workload. For all other workloads
evaluated, the drop in throughput was less than 5%.

5 Conclusions
The LTP tests confirm that Nilfs2 on the SMR disk is sta-
ble and can be used for normal workloads. Overall there
were no errors observed for normal working conditions.

The Filebench workloads on a whole indicate that
read performance remains almost same for both the reg-
ular disk and the SMR disk. However, there is a drop in
write performance in the SMR disk, believed to be due
to firmware modification. The sequential write workload
had a drop in throughput of 2%. The random write work-
load had a drop in throughput of 4%. The random write
direct workload had the highest decrease in throughput
of about 15%. The decreases in throughput for web-
server, mailserver, and fileserver workloads were 1.3%,
6.3%, and 4.9%, respectively.

Future Work. The results from webserver workload
showed an improvement in throughput for the CFQ I/O
scheduler, compared to the noop I/O scheduler. We be-
lieve that the reason is due to the merging of multiple I/O
requests by the scheduler. This needs to be verified by
comparing the results of a simpler workload like read-
ing from a raw device with I/O read requests within a
smaller LBA range.

Garbage collection is one of the main costs in any
log-structured file system like Nilfs2. The performance
of the file system when garbage collection is running
in parallel should be determined to account for perfor-
mance when the disk is nearly full. When Nilfs2’s con-
figuration was modified to run garbage collection con-
tinuously on the regular disk, there were kernel errors
observed under heavy workload spanning four times the
available main memory. These errors need to be in-
vestigated in more detail and fixed to make Nilfs2 in
Linux more stable while garbage collection is done un-
der heavy load conditions. One possibility is to try and
raise the Nilfs2’s over-provisioning value of 5% and see
if it improves GC stability. Another possibility is to in-
crease the number of Nilfs2’s superblock zones from two
(first and last zone) to, say, ten—and then distribute them
uniformly across the drive. This could reduce latency in
accessing a more localized super-block, but increase the
cost of synchronization of all super-block replicas.

Another future-work item is to explore the trade-off in
zone sizes. The zone sizes in our current prototypes are
likely the smallest capacity zone size that are practical
with SMR drives. A smaller zone size reduces overall
capacity through over-provisioning, but improves per-
formance thanks to shorter garbage collection times.
Larger zones will maximize capacity, but take more time
to garbage collect. The SMR performance given a spe-
cific zone size will therefore depend on the workload in
question. Selecting the right zone size native to the SMR
is therefore key: this is a function performed by the man-

5



ufacturer in the factory, and cannot be easily (if at all)
changed once the drive is released to the consumer.

Finally, as this is an ongoing project with an evolv-
ing technology, we continue to investigate newer gener-
ations of SMR drives. We plan to identify specific causes
of overheads and propose solutions (e.g., turning on/off
check-pointing and other firmware features).

Acknowledgments. Western Digital provided SMR
prototypes and support. Vasily Tarasov and Ming Chen
helped set up and provided valuable feedback.

References
[1] Y. Cassuto, M. A. A. Sanvido, C. Guyot, D. R.

Hall, and Z. Z. B. Indirection systems for shingled-
recording disk drives. In Proceedings of the Inter-
national IEEE Symposium on Mass Storage Systems
and Technologies (MSST), 2010.

[2] Filebench. http://filebench.sf.net.

[3] Seagate. Breaking capacity barriers
with Seagate shingled magnetic record-
ing. www.seagate.com/tech-insights/

breaking-areal-density-barriers-with-seagate-smr-master-ti/,
2013.

[4] Subrata Modak. Linux Test Project (LTP), 2009.
http://ltp.sourceforge.net/.

[5] Ikuya Tagawa and Mason Williams. High density
data-storage using shingle-write. In Proceedings
of the IEEE International Magnetics Conference,
2009.

[6] Roger Wood. Shingled magnetic recording
and two-dimensional magnetic recording. In
Proceedings of the IEEE IEEE Magnetics
Society Santa Clara Valley Chapter, 2010.
www.ewh.ieee.org/r6/scv/mag/MtgSum/

Meeting2010_10_Presentation.pdf.

[7] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy,
and E. Zadok. Auto-pilot: A Platform for Sys-
tem Software Benchmarking. In Proceedings of the
Annual USENIX Technical Conference, FREENIX
Track, 2005.

[8] A. Yoshiji, R. Konishi, K. Sato, H. Hifumi,
Y. Tamura, S. Kihara, and S. Moriai. Nilfs, 2009.

6


