
Exploiting Type-Awareness in a Self-Recovering Disk∗

Kiron Vijayasankar, Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok
Stony Brook University Computer Science Department

Stony Brook, NY 11794-4400
{kvijayas,gopalan,swam,ezk}@cs.sunysb.edu

Appears in the proceedings of the Third ACM Workshop on Storage Security and Survivability (StorageSS 2007)

ABSTRACT
Data recoverability in the face of partial disk errors is an important
prerequisite in modern storage. We have designed and implemented
a prototype disk system that automatically ensures the integrity of
stored data, and transparently recovers vital data in the event of
integrity violations. We show that by using pointer knowledge, ef-
fective integrity assurance can be performed inside a block-based
disk with negligible performance overheads. We also show how
semantics-aware replication of blocks can help improve therecov-
erability of data in the event of partial disk errors with small space
overheads. Our evaluation results show that for normal userwork-
loads, our disk system has a performance overhead of only 1–5%
compared to traditional disks.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Secondary Stor-
age

General Terms
Performance, Reliability

Keywords
Type-awareness

1. INTRODUCTION
Modern commodity disks do not follow thefail stop failure model

where the disk stops operation when there is a hardware error[17].
Partial failures in disks today can be attributed to latent sector faults [2]
or even silent block corruption [1], which can be hard to detect.
While expensive high-end disk systems (e.g., RAID [13]) imple-
ment recovery methods to deal with partial faults, cheaper desktop

∗This work was partially made possible by NSF CAREER
EIA-0133589 and CCR-0310493 awards and HP/Intel gifts num-
bers 87128 and 88415.1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-891-6/07/0010 ...$5.00.

hard drives (e.g., SATA disks) are much less reliable in handling
faults. Partial faults that are not detected on time can leadto seri-
ous software malfunction and data loss. For example, a bad bitmap
block in a file system can result in valid blocks being overwritten.

Although current disks have mechanisms such as error-correcting
codes and dynamic remapping of bad blocks to protect againstblock
corruption and failed writes, they do not handle several fault scenar-
ios. Applications and file systems employ integrity checks and re-
covery mechanisms to handle disk errors [4, 6, 9, 14, 15, 22].Disk-
level integrity assurance and data recovery is useful for two key rea-
sons: (1) mechanisms can be completely transparent to higher-level
storage software such as file systems or databases, thus reducing
their complexity; (2) disks can make use of their internal hardware
knowledge and load characteristics to perform efficient I/O.

Today’s disks treat data as completely opaque entities and they
lack information about higher-level data semantics. This makes
it hard to implement efficient integrity checking techniques at the
disk-level. For example, if block checksumming is used to ver-
ify integrity, information about access patterns can enable intelli-
gent prefetching of checksum blocks. Similarly, efficient recov-
ery mechanisms can be implemented if the relative importance of
blocks are known at the disk-level.

Knowledge about higher-level pointers at the disk level (e.g., an
inode block pointing to several data blocks) can be used to infer
three key details useful for integrity checking and recovery:

1. The paths used to access blocks, i.e., a sequence of blocks
that need to be accessed before a block is accessed (e.g., an
inode block has to be read before reading a data block pointed
to by it).

2. The relative importance of blocks; pointers help in communi-
cating the reachability of blocks. Blocks that have outgoing
pointers are more important as they impact reachability of
other blocks.

3. Block-liveness information; all allocated blocks must be reach-
able from at least one block.

We therefore leverage Type-Safe Disks (TSDs) [18] to build a
self-recovering disk system that uses higher level data semantics to
perform efficient integrity checking and recovery. A TSD is adisk
system that uses pointer information (i.e., type information) to en-
force active constraints on data access. For example, a TSD can
prevent applications from accessing unallocated blocks (an unallo-
cated block is one that is not pointed to by any other block). The
disk interface has been modified to allow file systems to communi-
cate pointers to the disk. The file systems uses the disk APIs such as
alloc block, create pointer, anddelete pointer to

1

notify the disk about the relationships among blocks that are stored
in it.

We have extended Type-Safe Disks to be more robust to disk
errors. We call our modified disk systemSelf-Recovering Disks
(SRDs). SRDs perform integrity checks by storing the checksums
of all blocks; during a block read, the SRD computes and com-
pares the block’s checksum with the one stored on disk. To reduce
the overhead of storing and comparing checksums, SRDs storethe
checksum blocks close to the original block’s parent block.

In order to provide recovery for reference blocks, SRDs perform
two-way replication of all reference blocks. Upon detecting an in-
tegrity violation, the replica is transparently used in theplace of the
corrupt reference block. It has been shown that some form of block
failures (e.g., a scratched surface) exhibit spacial locality, thereby
making a group of blocks inaccessible [8]. Hence, SRD placesthe
reference block and its replica bit far away from each other.This
decreases the probability that both the block and its replica will be
affected by latent sector faults. In addition to the integrity checks
and recovery mechanisms, SRDs areself-correcting: when an SRD
detects block corruption, it overwrites the corrupt block with the
data from its replica.

We benchmarked SRDs against regular disks for two different
workloads: Postmark, which represents a busy mail server, and a
kernel compile, which represents a developer’s machine. While
providing integrity checks for all blocks and recovery of reference
blocks, SRDs had a small overhead of 4.9% for Postmark and 0.7%
for kernel compile benchmark.

SRDs provide better reliability at the disk by checking the in-
tegrity of all blocks during read operations and replicating refer-
ence blocks (blocks that impact reachability of other blocks) bit far
away from each other. SRDs intelligently store the checksums of
blocks near their parent blocks and pre-fetch them when their parent
blocks are read. Finally, SRDs try to improve the disk performance
by redirecting read requests to the nearest copy during reference
block reads.

The rest of the paper is organized as follows. In Section 2, we
describe integrity assurance mechanisms, data recovery techniques
and Type-Safe Disks as a means of disk-level error detectionand
recovery. Section 3 discusses the design of SRDs. Section 4 de-
scribes our prototype implementation of SRDs. We evaluate all our
prototype implementation in Section 5. We discuss related work in
Section 6, and conclude in Section 7.

2. BACKGROUND
In this section, we describe common integrity assurance mecha-

nisms, and data recoverability mechanisms. We also describe why
Type-Safe Disks (TSDs) [18] are a good design choice for disk-
level error detection and recovery.

Integrity Assurance.
Sivathanu et al. [19] broadly classify integrity assurancemech-

anisms as physical redundancy techniques and logical redundancy
techniques. Physical redundancy techniques explicitly store redun-
dant information for integrity checking. Logical redundancy tech-
niques exploit structural redundancies that exist in the data for in-
tegrity checking. Checksumming and parity are two physicalre-
dundancy techniques used commonly. SRDs employ block-level
checksumming as a means of integrity assurance.

Data Recoverability.
Existing techniques like RAID [13] use redundant information

to the recover original information when a disk fails. Although
different levels of redundancy can be used for different performance
and reliability requirements, a fundamental drawback of existing
techniques is the inability to selectively replicate data at the disk-
level based on the data’s importance. This limitation arises out of
the information gap between the storage systems and the higher
layers [3, 5].

TSD for Disk-level Data Recoverability.
Type-Safe Disks (TSDs) [18] aim to bridge the information gap

between the storage systems and the higher layers [3, 5] through
pointers. Pointers serve as a simple yet powerful mechanismto
bridge this information gap. TSDs can distinguish reference blocks
from data blocks through pointers. Reference blocks are those that
have at least one incoming and outgoing pointer, whereas data blocks
have no outgoing pointers. Example of reference blocks would be
inode or indirect blocks that have outgoing pointers to dataor indi-
rect blocks, in the case of an FFS-like file system [12]. A block has
to be allocated first using the TSD API before it can be accessed;
this is because free-space management is moved to the disk from
file systems, and blocks that are not pointed by any other block are
automatically garbage collected. TSDs have type information (i.e.,
the ability to differentiate between reference and data blocks) and
block liveness information inside them. This makes TSDs a good
design choice for disk-level data recoverability techniques. SRDs
try to leverage TSDs’ type and liveness information to provide effi-
cient disk-level error detection and recovery while keeping the same
TSD interface.

Management
Freespace Pointer

Manager ManagerRecovery
Replication and

R
E
A
D

W
R
I
T
E

D
E
L
E
T
E
_
P
T
R

C
R
E
A
T
E
_
P
T
R

A
L
L
O
C
_
B
L
O
C
K
S

DISK/RAID

Physical Storage

Firmware

File System

Namespace
Management

Figure 1: Self-Recovering Disk

3. DESIGN
SRDs aim to provide error detection and recovery at disk-level

for a single disk. SRDs are designed to leverage the available pointer

2

information to selectively replicate important blocks. This enables
recovery of key data while consuming marginally more space.

3.1 Detecting Block Errors
Checksums using collision-resistant hash functions has been a

popular way of ensuring integrity. To provide data integrity, SRDs
compute collision-resistant checksum of all the blocks except those
that store the checksums. Our current implementation of SRDs use
the MD5 [16] algorithm to compute the checksum of blocks. How-
ever, the design does not restrict the hash algorithm used and MD5
can be replaced by any other hash algorithm. Checksums are up-
dated when the blocks are written to the disk. SRDs compute the
checksum of data read from the block and compares it with the
stored checksum of block to check for block corruption. Figure 1
shows the interface and components of SRDs.

3.1.1 Data Structures
SRDs use TSD on-disk structures [18] and additional data struc-

tures to keep track of the redundant information needed for error
detection and recovery. SRDs also maintain in-memory structures
that act as caches to improve performance.

On-Disk Structures.
PCTABLE. SRDs maintain a reference-block tracking table called
PCTABLE that is indexed by the reference block number. Each table
entry contains the reference block number, the list of blocknum-
bers that store checksums for the blocks pointed to by the refer-
ence block, and the bitmaps associated with each of these check-
sum blocks. A newPCTABLEentry is added when the first outgoing
pointer is created from a block.
PTABLE. SRDs also maintain a pointer tracking table calledPT-
ABLE that stores the set of all pointers. ThePTABLE is indexed by
the destination block of the pointer. EachPTABLE entry contains
a reference to thePCTABLE entry corresponding to the pointer’s
source block, and the offset of the destination block’s checksum in
the list of checksum blocks associated with the source block. A new
PTABLE entry is added when a new pointer is created.

In-Memory Structures.
LRU-CTABLE. This is an in-memory table that caches block check-
sums for fast updates and verification. It is a hash table indexed
by block number and each node contains block number, checksum
and the on-disk address of the checksum that is cached. All check-
sum fetches and updates first go toLRU-CTABLE. An LRU-CTABLE

cache miss results in the corresponding checksum block being read
andLRU-CTABLE entries being created. We use an LRU algorithm
to purge entries fromLRU-CTABLE and limit its size within the
maximum limit.
LRU CHECKSUM BLOCK CACHE. It is a list of checksum
blocks cached by SRD in order to speed up writing checksums back
to the disk. When a checksum block is read, it is added to this list.
The size of this list is also limited to a fixed maximum value. Old
checksum blocks are written back to the disk (or discarded ifthey
are not dirty) to make space for newly read checksum blocks inthe
list. We use an LRU algorithm to reclaim entries from this list.

3.1.2 SRD Operations for Block Reads and Writes
When a meta-data block is read, the checksum blocks of the data

that it points to are also read. The data read from these prefetched
checksum blocks are populated inLRU-CTABLE to reduce the time
required to read and verify the checksums of the data blocks that
this meta-data block points to. Sometimes the checksum entry may

be reclaimed fromLRU-CTABLE by the time the data block is read.
In such cases, the checksum block is read again and used to popu-
late the entries inLRU-CTABLE. The read request for the block has
to wait during this period of time. From our benchmark results we
show that this situation seldom occurs. In the majority of the time,
the data-blocks are read immediately after their parent block. The
operations that are performed during block writes are quitesimi-
lar to the operations performed during block reads. During block
writes, checksums are updated inLRU-CTABLE and marked dirty.
If the entry is not present inLRU-CTABLE, they are repopulated by
reading the checksum blocks as in the case of block reads. When
dirty entries are reclaimed fromLRU-CTABLE, the corresponding
checksum blocks are updated on disk. Updating checksum blocks
is optimized by keeping a cache of recently read checksum blocks
and updating all dirty checksums fromLRU-CTABLE that belong to
a particular checksum block before it is being written.

3.2 Selective Block Replication
Previous works such as D-GRAID [20] does selective meta-data

replication. D-GRAID understands file system data structures and
hence D-GRAID can replicate naming and system meta-data struc-
tures of the file system to a high degree while using standard redun-
dancy techniques for data. However, D-GRAID targets high-end
RAID systems whereas SRDs try to solve the same problem for
a single disk. SRDs understand the importance of blocks based
on pointer information. Hence SRDs are able to replicate impor-
tant blocks selectively while not replicating less important blocks,
thereby saving space without compromising much on error-recovery
capabilities. The reachability of data blocks is determined by their
reference blocks [18]. This means that reference blocks aremore
important than data blocks. Therefore, SRDs replicate reference
blocks and not data blocks.

Since SRDs replicate only reference blocks, we usePCTABLE

to hold the block number of the replica block along with each ref-
erence block number. Since higher level software is not aware of
reference block replication, all I/O requests are identified by the
block number of the primary copy. As thePCTABLE is indexed
by the block number of the primary copy, it is easy to retrievethe
replica block number in case of an I/O error. All I/O operations on
replica blocks keep track of the block number of the primary copy
since it is needed to updatePCTABLE and to pass the result to the
higher-level software layers.

Recovery mechanism during failed block writes are already present
in disks [15]. SRD focuses on unreadable blocks or block corrup-
tion. During a block read, the stored checksum of the block may
not match the one computed from its contents. If the block is aref-
erence block SRD tries to locates its replica. The replica could be
scheduled to be written to disk, waiting in the disk queue, orneeds
to be read back from the disk and is returned back to the user once
its integrity is verified.

The prototype implementation of SRD does not handle crash
consistency. If power is lost abruptly, the disk may go to an in-
consistent state: copies of the meta-data block that are scheduled to
be written could be lost. We can avoid this situation by usingwrite
ahead logging for the meta-data updates. This would ensure that
during crash recovery, the disk replays the operations reading from
the logs.

3.3 Data Recovery
We check the replica block when the checksum does not match

with the original block. If the checksum matches with the replica
block, the data is recovered. If the checksum of the replica does not

3

match with the stored checksum, then we assume that the stored
checksum block is corrupted. SRDs compute checksums for the
original block and its replica and compare them to see if theyare the
same. If the checksums match, SRDs replace the corrupt checksum
entry. Hence SRDs are able to recover data when at least two ofthe
three redundant data items are available (primary copy, replica, and
checksum).

3.4 Limitations
Error detection and recovery at disk-level alone cannot handle

certain types of errors, like bus errors or firmware bugs. Performing
error detection and recovery at the file-system level could be a better
option in these cases.

4. IMPLEMENTATION
We implemented a prototype SRD based on our TSD implemen-

tation as a pseudo-device driver in Linux kernel 2.6.15 thatstacks
on top of an existing disk block driver. Our implementationsadded
approximately 1,500 lines of kernel code to the prototype TSD
block driver implementation while changing about 50 lines of ex-
isting TSD code. No change was needed at file system level or
user level. SRDs work with file systems modified for TSDs without
any further changes. This shows that SRDs can be used with any
software that runs on TSDs.

The SRD layer accepts all but only those primitives acceptedby
TSDs. The SRD layer intercepts all read/write requests, performs
the operations needed for error detection/recovery and redirects the
requests to the lower-level device driver. The SRD layer also in-
tercepts replies from the lower level device driver and performs the
necessary SRD operations on the I/O. The operations performed
at SRD layer include checksum update and verification, as well as
replication.

We implemented thePTABLE and thePCTABLE as in-memory
hash tables which get written flushed to disk at regular intervals of
time through an asynchronous commit thread. We did not modify
other TSD data structures such as theRTABLE and thus they remain
unchanged from the TSD implementation we used.

We implemented the SRD in-memory structures (LRU-CTABLE

andCHECKSUM BLOCK CACHE) as data structures with fixed max-
imum size limit. This was to ensure that they can fit into the mem-
ory available on a real disk. We used the LRU strategy to reclaim
entries from theLRU-CTABLE and theCHECKSUM BLOCK CACHE.

The replication of a block has to be initiated when the first pointer
is created from that block. This is when the block changes from a
normal block to a reference block. We achieve this by allocating
the replica block and explicitly initiating the first replication when a
block is newly added to thePCTABLE. To handle subsequent writes
to a reference block, each write I/O is intercepted by the SRDlayer
and we perform a lookup to check to see if the block is present
in the PCTABLE. If it is present, then the replica block number is
fetched from thePCTABLE and an asynchronous write is issued to
the replica block with the same data.

Our current prototype implementation of SRDs does not address
data-block recovery. In the future, parity methods can be used to
recover data-blocks. SRDs cannot overcome multiple failures of
the same meta-data block (i.e., if the block and its replica are cor-
rupted).

5. EVALUATION
We evaluated the performance of our prototype SRD framework

in the context of Ext2TSD [18]. Ext2TSD is the Linux Ext2 file sys-

tem modified to support TSDs. Ext2TSD is similar to Ext2 except
for the fact that allocations and de-allocations are done byusing the
disk API. We ran general-purpose workloads on our prototypes and
compared them with an unmodified Ext2 file system on a regular
disk. This section is organized as follows: first we describeour test
platform and configurations. We then analyze the performance of
the SRD framework using the Ext2TSD file system with the Post-
mark and kernel compile benchmarks.

We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and
a 74GB 10Krpm Ultra-320 SCSI disk. We used Fedora Core 4,
running a vanilla Linux 2.6.15 kernel. To ensure a cold cache, we
unmounted all involved file systems between each test. We ranall
tests at least five times and computed the 95% confidence inter-
vals for the mean elapsed, system, user, and wait times usingthe
Student-t distribution. In each case, the half-widths of the intervals
were less than 5% of the mean. We define wait time as the elapsed
time less CPU time used and it consists mostly of I/O, but process
scheduling can also affect it.

5.1 Space Overheads
We measured the space overhead of the SRD over a traditional

disk for a Linux-2.6.15 kernel tree. This is a 253MB dataset with
1,160 directories and 18,798 files. The extra space taken by the
SRD was 2.01%, out of which 1.90% was for PTABLE and 0.11%
was for PCTABLE. For large files, the overhead will be less since
the number of pointer blocks will be less. 1.90% of this spaceover-
head is for TSD meta-data and the SRD meta-data adds only 0.11%
since PCTABLE is the only persistent meta-data maintained by the
SRD other than the TSD meta-data.

5.2 Postmark
We used Postmark v1.5 to generate an I/O-intensive workload.

Postmark stresses the file system by performing a series of opera-
tions such as directory lookups, creations, reads, appends, and dele-
tions on small files [17]. For all runs, we ran Postmark with 50,000
files and 500,000 transactions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

SRD with FaultsSRDTraditional Disk

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

260.1
273.0

287.9

Wait
User

System

Figure 2: Postmark results for SRD

Figure 2 shows the comparison of Ext2TSD over SRD with reg-
ular Ext2 over a traditional disk. SRD has a system time overhead
of about 19% compared to a traditional disk. The increase in sys-
tem time is due to checksum computation and hash table lookups
required for checksum updates and verification. The wait time of
SRD was only about 2% higher than that of a traditional disk. SRD
impose additional overhead when reading and writing checksum

4

blocks. However, this overhead is offset to some extent by the bet-
ter spatial locality in SRD for the Postmark workload. Ext2’s allo-
cation policy takes into account future file growth and henceleaves
free blocks between newly created files. Ext2TSD does not imple-
ment this policy and hence we have better locality for small files.
Overall, the elapsed time for SRD is 5% more than that for the reg-
ular disk.

We also tested the performance of SRD with artificial fault injec-
tion. For this, we injected 20% faults during reads. However, since
the prototype implementation of SRD cannot recover corrupted data
blocks, we ignored data block corruption and passed the readblock
to the higher layers. The implementation cannot recover if both
copies of a pointer block are corrupted. So we injected faults peri-
odically, once for every five reads. Faults injected in pointer block
reads were caught by SRD and the replica blocks were read. Pe-
riodic injection of faults ensured that both the original and replica
reads were not fault injected. The total overhead was about 5% over
SRD without fault injection. The system and wait times were com-
parable to normal SRD, but wait time was about 9% higher due to
the extra reads needed for replica blocks.

5.3 Kernel Compile
To simulate a relatively CPU-intensive user workload, we com-

piled the Linux kernel source code. We used a vanilla Linux 2.6.15
kernel, and analyzed the overheads of Ext2TSD, for theuntar,
make oldconfig, andmake operations combined.

 0

 500

 1000

 1500

 2000

 2500

 3000

SRDTraditional Disk

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

2213 2229

Wait
User

System

Figure 3: Kernel compile results for SRD

Figure 3 shows the comparison of Ext2TSD over SRD with reg-
ular Ext2 over a traditional disk. The system time overhead of
SRD over a traditional disk for kernel compile workload is about
4%. The elapsed-time overhead of Ext2TSD over SRD compared
to Ext2 over a traditional disk under this benchmark is less than 1%.
The wait time overhead is about 16%. This increase in wait time is
not only due to the increase in I/O. The increase occurs also be-
cause the SRD checksum cache update thread preempts the CPU to
update the checksum cache and write dirty checksums to the disk.
This thread takes more system time, which manifests as wait time
in the context of the kernel compile benchmark.

6. RELATED WORK
SRDs combine integrity check, physical redundancy, and disk-

level performance optimization to provide efficient error detection
and recovery. In this section, we discuss previous work related to

data integrity, physical redundancy and performance optimization
at disk-level.

Data integrity.
Data integrity has become more important in recent times dueto

unreliable hardware devices. Many file systems [4, 6, 9, 21, 23] use
checksums to verify the integrity of the data stored on disk.

Our work is closely related to IRON file systems [15], a technol-
ogy which makes file systems more robust to disk errors by com-
puting checksums for all blocks, replicating meta-data blocks for
redundancy, and recovering corrupted or inaccessible blocks. As
seen from their benchmark results, the overheads of integrity verifi-
cation, replication, and recovery are higher when performed at the
file-system level. Conversely, SRD fulfills these responsibilities in-
side the disk, avoiding duplication of functionality for multiple file
systems. With the help of type information and internal diskstate,
SRDs can perform these operations more efficiently.

ZFS [22] is another file system that is close to our work. ZFS
provides block-level integrity verification, replication, and recov-
ery. ZFS also stores the checksums of each data block in the parent
block that points to it. ZFS’s recovery mechanism makes use of
multiple disks, if available. In contrast, SRD’s recovery mechanism
works within a single disk. SRD provides functionality similar to
the Storage Pool Allocator layer of ZFS, but at disk level. Since
SRD checks integrity, replicates, and recovers blocks in a manner
that is transparent to other layers in the storage stack, it works with
any file system designed for TSDs.

Replicating blocks.
Replicating blocks at the file system and the disk level has been

a popular solution for providing redundancy. The Fast File Sys-
tem [12] replicates the super block across all platters of the disk.
RAID systems [13] replicate blocks for redundancy. These systems
do not have type information inside the disk, hence they cannot
replicate blocks selectively (e.g., only metadata blocks)in the disk.

FS2 [7] uses the free space in the file system to replicate blocks
in the disk according to their access pattern. This is not a complete
solution as the disk cannot capture the access patterns correctly due
to three reasons: (1) caching of blocks by OS, (2) changing access
patterns, and (3) the fact that replicating all blocks wouldconsume
at least half of total disk space. In contrast, type-awareness enables
SRDs to know the relationship between blocks stored on the disk
and selectively replicate meta-data blocks. We believe that SRDs
can also use the information about access patterns of blocksto im-
prove their performance.

Performance optimization in the disk.
The idea of utilizing the available disk bandwidth by interleav-

ing low-priority requests between high priority requests has been
explored in freeblock scheduling [10, 11]. SRDs take a similar
approach by interleaving low-priority operations such as writing
back modified checksum blocks and replicating meta-data blocks
between regular block requests, incurring a very small overhead.

7. CONCLUSIONS
In this paper, we have shown that with pointer information at

the disk-level, effective integrity assurance and data recoverabil-
ity mechanisms can be built inside the disk. Our pointer-guided
prefetching mechanism for checksum blocks achieves negligible
I/O overheads for reading redundant data used for integritycheck-
ing. With selective block replication, we have handled one of the

5

most important forms of data recoverability, by just replicating a
small fraction of blocks on disk. Intelligent placement andprefetch-
ing of checksum blocks ensure that the overall overheads arenegli-
gible for SRDs as shown by our evaluation results. We believethat
our design represents an effective choice for building morereliable
disks while remaining compatible with a wide-range of storage ap-
plications such as file systems and databases.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments, and Avishay

Traeger and Sean Callanan for their insightful comments on earlier
drafts of the paper.

9. REFERENCES
[1] W. Barlett and L. Spainbower. Commercial fault tolerance: A

tale of two systems. InProceedings of the IEEE Transactions
on Dependable and Secure Computing, pages 87–96, January
2004.

[2] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-Diagonal Parity for Double
Disk Failure Correction. InProceedings of the Third USENIX
Conference on File and Storage Technologies (FAST 2004),
pages 1–14, San Francisco, CA, March/April 2004. USENIX
Association.

[3] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Bridging the information gap in storage
protocol stacks. InProceedings of the Annual USENIX
Technical Conference, pages 177–190, Monterey, CA, June
2002. USENIX Association.

[4] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and Secure
Distributed Read-Only File System. InProceedings of the 4th
Usenix Symposium on Operating System Design and
Implementation (OSDI ’00), pages 181–196, San Diego, CA,
October 2000. USENIX Association.

[5] G. R. Ganger. Blurring the Line Between OSes and Storage
Devices. Technical Report CMU-CS-01-166, CMU,
December 2001.

[6] S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File
System. InProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), pages 29–43,
Bolton Landing, NY, October 2003. ACM SIGOPS.

[7] H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk
Performance and Energy Consumption. InProceedings of the
20th ACM Symposium on Operating Systems Principles
(SOSP ’05), pages 263–276, Brighton, UK, October 2005.
ACM Press.

[8] H. Kari, H. Saikkonen, and F. Lombardi. Detection of
defective media in disks. InProceedings of the IEEE
International Workshop on Defect and Fault Tolerance in
VLSI Systems, Washington, DC, 1993. IEEE Computer
Society.

[9] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An
In-Kernel Integrity Checker and Intrusion Detection File
System. InProceedings of the 18th USENIX Large
Installation System Administration Conference (LISA 2004),
pages 69–79, Atlanta, GA, November 2004. USENIX
Association.

[10] C. Lumb, J. Schindler, G. R. Ganger, and D. F. Nagle.
Towards higher disk head utilization: Extracting free

bandwidth from busy disk drives. InProceedings of the 4th
Usenix Symposium on Operating System Design and
Implementation (OSDI ’00), pages 87–102, San Diego, CA,
October 2000. USENIX Association.

[11] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock
Scheduling Outside of Disk Firmware. InProceedings of the
First USENIX Conference on File and Storage Technologies
(FAST 2002), pages 275–288, Monterey, CA, January 2002.
USENIX Association.

[12] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX.ACM Transactions on Computer
Systems, 2(3):181–197, August 1984.

[13] D. Patterson, G. Gibson, and R. Katz. A case for redundant
arrays of inexpensive disks (RAID). InProceedings of the
ACM SIGMOD, pages 109–116, June 1988.

[14] H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleinman, and S. Owara. SnapMirror: File System Based
Asynchronous Mirroring for Disaster Recovery. In
Proceedings of the First USENIX Conference on File and
Storage Technologies (FAST 2002), pages 117–129,
Monterey, CA, January 2002. USENIX Association.

[15] V. Prabhakaran, N. Agrawal, L. N. Bairavasundaram, H. S.
Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
IRON File Systems. InProceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05),
pages 206–220, Brighton, UK, October 2005. ACM Press.

[16] R. L. Rivest. RFC 1321: The MD5 Message-Digest
Algorithm. In Internet Activities Board. Internet Activities
Board, April 1992.

[17] Fred B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial.ACM Computer
Survey, 22(4):219–319, 1990.

[18] G. Sivathanu, S. Sundararaman, and E. Zadok. Type-Safe
Disks. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages
15–28, Seattle, WA, November 2006. ACM SIGOPS.

[19] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data
integrity in storage: Techniques and applications. In
Proceedings of the First ACM Workshop on Storage Security
and Survivability (StorageSS 2005), pages 26–36, FairFax,
VA, November 2005. ACM.

[20] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Improving Storage System
Availability with D-GRAID. In Proceedings of the Third
USENIX Conference on File and Storage Technologies (FAST
2004), pages 15–30, San Francisco, CA, March/April 2004.
USENIX Association.

[21] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying file
system protection. InProceedings of the Annual USENIX
Technical Conference, pages 79–90, Boston, MA, June 2001.
USENIX Association.

[22] Sun Microsystems, Inc. Solaris ZFS file storage solution.
Solaris 10 Data Sheets, 2004.
www.sun.com/software/solaris/ds/zfs.jsp.

[23] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A secure
and convenient cryptographic file system. InProceedings of
the Annual USENIX Technical Conference, pages 197–210,
San Antonio, TX, June 2003. USENIX Association.

6

